The study includes two and a half years of preparation and support for all the mathematics instructional leaders (ILs) within a large urban school district with a substantial minority student enrollment. These ILs will implement the Problem-Solving Cycle model with the mathematics teachers in their schools. Researchers will analyze the preparation and support that ILs need, the quality of their implementation, and the impact of the PD process on ILs, teachers, and students.
Projects
This project has pioneered simulation-based assessments of model-based science learning and inquiry practices for middle school physical and life science systems. The assessment suites include curriculum-embedded, formative assessments that provide immediate, individualized feedback and graduated coaching with supporting reflection activities as well as summative end-of-unit benchmark assessments. The project has documented the instructional benefits, feasibility, utility, and technical quality of the assessments with over 7,000 students and 80 teachers in four states.
This project is assessing the potential value and feasibility of developing and implementing content standards for K-12 engineering education. The project is reviewing existing efforts to define what students should know; identifying elements of existing standards for related content areas that could link to engineering; considering how purposes for engineering education might affect content and implementation of standards; and suggesting changes to policies, programs, and practices necessary to develop and implement engineering standards.
This project develops resources to facilitate the involvement of college and university physics departments in the professional development of K-12 teachers of physics and physical science. Research investigates how students and teachers learn content and reasoning skills for applying concepts to real world situations; how teachers can learn content in a way that helps them promote student learning; and how teachers can learn to assess student understanding in a way that promotes student learning.
This project researches the use of cyberinfrastructure to implement a strategy for using online telescopes as a laboratory to engage middle and high school students in cutting edge science research while providing them with significant new opportunities to apply STEM concepts, practice inquiry, and design and learn about the nature of scientific discovery.
CAST, the University of Michigan, and EDC are collaborating to create heuristics for universally designed middle and high school science materials; to build an open-source UDL Inquiry Science System (ISS) that enables science curricula to be transformed into digitally supported versions that incorporate UDL features, to use the ISS to produce four UDL exemplars from tested instructional materials, and to evaluate the benefits of these exemplars for grades-5–12 students with and without learning disabilities.
This project uses Antarctic pack-ice penguins to hook students into exploring how science investigates changes in Earths biota and climate. The project builds on a pilot effort, called Penguin Science, and will develop PowerPoint presentations, short video \"webisodes,\" background reading material, and live and interactive website components to engage students in ongoing field research. Students, K-14, will be involved in climate-change research that will include ecology, sedimentology, paleontology, glaciology and oceanography.
SPRINTT uses an innovative, live, online training format to train hundreds of teachers in how to teach life, Earth, and physical science content in a polar context. Polar scientists directly inform the content and participate in the training. SPRINTT provides teachers with existing and adapted, high-quality, standards-based curriculum materials and collaborates with science and education partners to simplify research data and create a user-friendly interface from which students perform their own authentic polar research projects.
This project is implementing a program of professional development for teachers and web interface that links scientists with urban classrooms. Scientist mentors work with students and teachers through the web to carry out an original "authentic" inquiry project in plant science. The classroom intervention involves high school biology students working in assigned teams to generate their own research questions in plant science centered on core biology concepts from the National Science Education Standards.
This project aims to develop a software diagnostic tool for integrating diagnostic interviews, group administered assessments, and student data in real-time so that teachers can enter and view student status information. This project would concentrate on rational number learning in grades 3-8. The design is based on a model of learning trajectories developed from existing research studies.
This project is creating five video-case modules for use in professional development of middle school mathematics teachers. The materials are designed to develop teachers' understanding of mathematics knowledge for teaching similarity. In total, 18-24 video cases will be produced, which, taken together, form the curriculum of a 45- to 60-hour professional development course.
This project aims to (1) investigate whether or not it is possible to successfully scale-up and adapt the Capacity Building Systems Model used in the Gadsden Mathematics Initiative and improve mathematics achievement for all students in a larger school district, and (2) replicate success in broadening the participation of underrepresented groups in entering STEM field by closing the achievement gap and raising the achievement level of underrepresented students in mathematics.
This study is aimed at exploring the components and impact of a teacher professional development model on teacher performance and student achievement and motivation in STEM disciplines at schools serving large numbers of minority students. It also aims to research and evaluate the impact of teachers who provide students with school experiences that are geared toward fostering high academic achievement.
This project aims to (1) determine ways in which Evidence-Centered Design enhances the quality of large-scale, technology-based science assessments for middle school grades and high school equivalency; (2) implement resulting procedures in operational test development; (3) evaluate the efficiency, effectiveness and generalizability of these procedures, and (4) disseminate findings to the assessment community.
This project uses media such as Science Bulletin Snapshots to engage students with current research and to foster scientific understanding and civic engagement. Through environmental case studies, students learn to develop hypotheses, analyze scientific data, and make conclusions. To address the objectives, the project will create inquiry-based case studies to situate several central ecological principles, as determined by national and state standards, into the context of environmental issues.
This project seeks to advance knowledge in K-12 STEM education and assessment practices by building capacity for Assessment for Learning, improving assessments and teacher preparation courses, and providing models for pre-service teacher preparation through enhanced teaching modules. Three goals are: (1) faculty from three centers form a learning community, (2) recruit 5 STEM research scholars to conduct research on measurement and evaluation, and (3) expose pre-service teachers to assessment models in their coursework.
This curriculum development and professional development program includes residential summer institutes with academic-year online communication for in-service teachers involved in professional development of their colleagues. During each summer institute, teachers will be introduced to sets of STEM Polar Connections Modules that will emphasize the process of scientific inquiry and will explore a variety of proven techniques for effective teaching, including inquiry-based teaching, cooperative learning, and methods for formative assessment of student learning.
This project examines the nature of adaptive expertise in mathematics education, exploring relationships between this concept from cognitive psychology and effective middle school mathematics instruction. One goal of the project is to operationalize adaptive expertise in mathematics classroom using three dimensions: cognitive models of professional competence, instructional practices, and professional learning. Then, researchers seek to determine whether teachers who are more effective at raising student achievement are more or less adaptive.
The PuM project develops and conducts research on a learning continuum for seamless instruction in middle school physical science and high school physics. The ultimate goal is to use physics as the context to develop mathematics literacy, particularly with students from underrepresented populations and special needs students. The research component analyzes the effects of the curriculum on students' learning while simultaneously investigating teachers' pedagogical content knowledge in a variety of forms.
The primary purpose of this international conference was for participants in the US to exchange views and discuss the latest research findings on (primary) science assessment. The conference focused on research around building assessment systems that help teachers diagnose student learning in the classroom but also link meaningfully to large-scale accountability systems (in districts or national levels). The project resulted in a report, proceedings, journal publications.
This study explores the ways middle school mathematics teachers implement standards-based curriculum materials in urban schools. It takes the view that instructional materials are cultural tools and examines how teachers use these tools to plan and implement the curriculum in their classrooms. The study is using a mixed methods approach that combines surveys of teachers in 30 schools in the Newark Public Schools district and closer observations of teachers in selected case schools.
This project addresses middle school students’ learning of science through the improvement of their inquiry science skills. The main goal is to develop a rigorous, technology-based assessment system for standards-aligned assessment of inquiry skills in six physical science content areas (i.e., Properties of Matter; Elements, Compounds, and Mixtures; Motion of Objects; Forms of Energy; and Heat Energy). Assessments are aligned with the Massachusetts Curricular Framework and National Science Education Standards.
This grant examines the changes teachers and students go through in their first year of implementing a New Technology High School project-based curriculum for ninth graders in two high schools. This first year of implementation is part of a phased-in implementation for subsequent grades. The NTHS approach calls for moving from more traditional approaches to mathematics and science education to project-based curricula that posits mathematics and science in the context of real-world issues and problems.
This project revises and tests integrated STEM modules and an accompanying professional development component that promote differentiated instruction in order to facilitate high school teachers' instruction of 21st century skills and integrated STEM content. STEM Fusion is a multi-tiered project focusing on the refinement of draft professional resources and the development of teacher skills related to differentiated instruction within integrated STEM instruction.
The ReaL Earth Inquiry project empowers teachers to employ real-world local and regional Earth system science in the classroom. Earth systems science teachers need the pedagogic background, the content, and the support that enables them to engage students in asking real questions about their own communities. The project is developing online "Teacher-Friendly Guides" (resources), professional development involving fieldwork, and inquiry-focused approaches using "virtual fieldwork experiences."
