Projects

09/01/2014

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

08/01/2014

This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs.

07/01/2019

This project addresses a gap between vision and implementation of state science standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations.

03/15/2022

This project supports school-based science teachers and students in conducting community-based science research on the causes and effects of extreme heat/urban islands in racially and ethnically diverse communities. Teachers will participate in professional learning experiences that support their development of content knowledge, scientific research practices, and critical pedagogies needed to design and implement research projects in their classroom. Students will identify locally-relevant issues related to this phenomenon, conduct investigations to explore the issue, share their findings through arts-based community narratives, and advocate for change. This project will broaden access to empowering youth-centered approaches that support learning and identity construction in science.

04/01/2010

This research project aims to explore and understand how geographic information systems (GIS) can be used to promote and teach spatial thinking and social science inquiry skills. It addresses the research question: What are effective teaching practices using GIS to teach spatial thinking and social science inquiry in middle-school and undergraduate classrooms? This program will study the effectiveness of teaching practices for social science instruction with GIS in urban public schools for specific learning objectives.

06/01/2018

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

07/15/2012

The project at Spelman College includes activities that develop computational thinking and encourage middle school, African-American girls to consider careers in computer science. Over a three-year period, the girls attend summer camp sessions of two weeks where they learn to design interactive games. Experts in Computational Algorithmic Thinking as well as undergraduate, computer science majors at Spelman College guide the middle-school students in their design of games and exploration of related STEM careers.

07/01/2013

The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.

05/15/2013

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

07/15/2015

This project will develop an intervention to support the teaching and learning of proof in the context of geometry. This study takes as its premise that if we introduce proof, by first teaching students particular sub-goals of proof, such as how to draw a conclusion from a given statement and a definition, then students will be more successful with constructing proofs on their own.

02/01/2020

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

05/01/2021

This project team partners with the mathematics department of one urban public charter high school that serves 65% students of color (most of whom identify as African American). At the school, 70% of all students qualify for free or reduced lunch, and 25% of the students have Individualized Education Plans. This project investigates: 1) how mathematics teachers learn to teach the mathematics content through investigation of relevant social issues, 2) how teachers negotiate classroom dilemmas related to this approach, and 3) how students feel about mathematics and their ability to enact change toward an equitable society.

05/15/2013

This project will develop and study a professional development framework that is designed to help high school geometry teachers attend more carefully to student prior knowledge, interpret the learning implications of student prior knowledge, and adjust teaching practices accordingly. Participating teachers will participate in study groups that analyze animations of productive teaching practices; they will collaborate in planning, implementing, and analyzing geometry lessons; and they will critique videos of their own classroom instruction.

09/01/2016

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

06/01/2016

This project will investigate the potential benefits of interactive, dynamic visualization technologies in supporting science learning for middle school students, including ELLs. This project will identify design principles for developing such technology, develop additional ways to support student learning, and provide guidelines for professional development that can assist teachers in better serving linguistically diverse students. The project has the potential to transform traditional science instruction for all students, and to broaden their participation in science.

07/01/2012

Research has shown that engaging students, including students from underrepresented groups, in appropriately structured reasoning activities, including argumentation, may lead to enhanced learning. This project will provide information about how teachers learn to support collective argumentation and will allow for the development of professional development materials for prospective and practicing teachers that will enhance their support for productive collective argumentation.

07/01/2024

This project examines student and teacher experiences with the de-tracking of math sequences in a public school district in Western Oregon. It examines how a district-wide cohort of middle school students, as individuals and in groups, identify with and define what it means to be good at math, and how these identities shift over time as they progress through math sequences. It also establishes a partnership between a mathematics education researcher and a school district (Research Practice Partnership) to study changes in pedagogy, define problems of teaching practice, and design solutions as the district transitions to de-tracked classes.

03/01/2023

Realizing the potential of preschool to address historical inequities demands a deeper, more nuanced understanding of the varied ways opportunities to learn play out for individual children within and across classrooms. The goal of this project is to illuminate the variability in opportunities for mathematics learning in early childhood through capturing the experiences of individual children over time. The goal is to understand how these children navigate opportunities to participate in mathematical activity, their perspectives of what knowing and doing mathematics entails, and the resources they draw upon to engage in mathematical practices.

07/01/2016

This project will investigate teachers' knowledge of noticing students' science thinking. The project will examine teacher noticing in practice, use empirical evidence to model the teacher knowledge involved, and design teacher learning materials informed by the model. The outcomes of this project will be a model of teachers' knowledge of noticing Appalachian students' thinking in science and the design of web-based interactive instructional materials supporting teachers' knowledge construction around noticing Appalachian students' thinking in science.

07/01/2017

This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. This award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction.

07/01/2014

This project is documenting how students with learning disabilities (LD) access and advance their conceptual understanding of fractions.  Rather than focusing on the knowledge students do not have, this work is focused on uncovering students' informal knowledge that can bridge to fractions and how instruction can be used to promote conceptual change. 

 

06/01/2020

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

08/15/2014

Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. 

06/15/2009

This project involves a longitudinal, ethnographic study of children's mathematical performances from preschool to first grade in both formal classroom settings and informal settings at school and home. The study seeks to identify opportunities for mathematical learning, to map varied performances of mathematical competence, to chart changes in mathematical performance over time, and to design and assess the impact of case studies for teacher education.

08/01/2023

Access to high quality STEM education is highly variable depending on where one lives. In addition, early career teachers need support during their first years of teaching to be successful and help them stay in the profession. This project aims to provide in-service and beginning elementary school teachers increased opportunities to refine their mathematics teaching to support minoritized youth in racially diverse rural communities in Georgia that have less access to elementary mathematics specialists. This project follows and supports both beginning teachers (BTs) and elementary mathematics coaches (EMCs) over 5 years to develop and refine their mathematics teaching and coaching, respectively, using equity-based tools to guide reflection and conversations about both the BTs’ instructional practices and the EMCs’ coaching practices.