Projects

10/01/2017

This project will work in partnership with the Santa Clara Unified School District (SCUSD) to adapt a previously designed Professional Learning (PL) model based on the District's objectives and constraints to build the capacity of teacher leaders and a program coordinator to implement the adapted PL program. The project is examining the sustainability and scalability of a PL model that supports the development of teachers' pedagogical content knowledge and instructional practices. The project is contributing knowledge about how to build capacity in districts to lead professional learning in science that addresses the new teaching and learning standards and is responsive to the needs of their local context.

10/01/2022

This comprehensive systematic review and meta-analysis synthesizes evidence surrounding math and science remote education programs from the past 15 years. The goal is to understand the effectiveness of math and science remote education programs; how their effectiveness varies by program characteristics (e.g., fully online vs. hybrid, synchronous vs. asynchronous, and student-instructor ratio); and whether their effects vary with student sample characteristics.

08/15/2021

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

08/01/2022

This project explores the effectiveness of two different versions of professional development (PD) designed to enhance middle school mathematics teachers’ understanding of fractions and proportions, and their teaching of these mathematical concepts to students. The PD uses an approach that engages teachers with web-based apps that allow them to test and experiment with their mathematical ideas. The apps, combined with guiding questions that challenge teachers’ thinking about fractions and proportions, serve both to promote critical thinking about the concepts and to further developing their understandings of the concepts. The researchers will use an innovative approach, topic modeling, to examine the effectiveness of each of version of the PD.

09/01/2020

The goal of this project is to develop learning progressions and assessment items targeting computational thinking. The items will be used for a test of college-ready critical reasoning skills and will be integrated into an existing online assessment system, the Berkeley Assessment System Software.

07/01/2021

This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively.

09/01/2018

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

02/15/2017

This project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). The study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion. To do this, the content within mathematical lessons (both planned and enacted) is framed as mathematical stories and the felt tension between how information is revealed and withheld from students as the mathematical story unfolds is framed as its mathematical plot.

07/01/2019

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.

02/01/2020

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

06/01/2018

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

07/15/2021

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

07/01/2019

This project will investigate the factors that influence curriculum coherence and how teachers in Grades 3-5 respond to these factors as they make decisions about their mathematics curriculum.

09/01/2020

The goal of this project is to study how the integration of an online curriculum, scientist mentoring of students, and professional development for both teachers and scientist mentors can improve student outcomes. In this project, teachers and scientist mentors will engage collaboratively in a professional development module which focuses on photosynthesis and cellular respiration and is an example of a student-teacher-scientist partnership. Teachers will use their training to teach the curriculum to their students with students receiving mentoring from the scientists through an online platform. Evaluation will examine whether this curriculum, professional development, and mentoring by scientists will improve student achievement on science content and attitudes toward scientists. The project will use mixed-methods approaches to explore potential factors underlying efficacy differences between in-person and online professional development. An important component of this project is comparing in-person professional development to an online delivery of professional development, which can be more cost-effective and accessible by teachers, especially those in rural and underserved areas.

08/01/2019

This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.

09/01/2018

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

09/01/2018

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

09/01/2018

This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.

09/01/2019

This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

08/01/2022

The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.

09/01/2019

This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.