Projects

08/15/2021

Widely-adopted science education standards have expanded expectations for students to learn science research processes. To address these needs, the project will research and develop curricular materials and classroom practices that teachers can use to bring authentic science into their classes and engage students as active science researchers. The project, called MothEd, will focus on the study of moths, which are well-suited to the project’s goal of having students conduct authentic scientific investigations.

09/01/2018

The goal of this project is to formalize subjective ideas about the important concept of replication, provide statistical analyses for evaluating replication studies, provide properties for evaluating the conclusiveness of replication studies, and provide principles for designing conclusive and efficient programs of replication studies.

09/15/2017

The primary aim of this study is to develop mathematics screening assessment tools for Grades K-2 over the course of four years that measure students' abilities in numeric relational reasoning and spatial reasoning. The team of researchers will develop Measures of Mathematical Reasoning Skills system, which will contain Tests of Numeric Relational Reasoning (T-NRR) and Tests of Spatial Reasoning (T-SR). The measures will be intended for use by teachers and school systems to screen students to determine who is at-risk for difficulty in early mathematics, including students with disabilities.

08/01/2017

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The project will examine how to collect data about students' learning from data generated as they play the game, how students learn mathematics using the simulation, and how the simulation can be included in middle school mathematics learning.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

05/01/2020

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

09/01/2020

Through this project, researchers will develop internet-based assessments designed to capture learning outcomes that (a) measure the higher order cognitive skills that are essential to current reform efforts, and (b) that report results in ways that are readily accessible and interpretable.

07/01/2017

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

09/01/2021

The COVID-19 pandemic has highlighted the need for supporting student learning about viral outbreaks and other complex societal issues. Given the complexity of issues like viral outbreaks, engaging learners with different types of models (e.g., mechanistic, computational and system models) is critical. However, there is little research available regarding how learners coordinate sense making across different models. This project will address the gap by studying student learning with different types of models and will use these findings to develop and study new curriculum materials that incorporate multiple models for teaching about viral epidemics in high school biology classes.

08/01/2019

This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms.

06/01/2017

This project focuses on the teaching practice of building on student thinking, a practice in which teachers engage students in making sense of their peers' mathematical ideas in ways that help the whole class move forward in their mathematical understanding. The study examines how teachers incorporate this practice into mathematics discussions in secondary classrooms by designing tasks that generate opportunities for teachers to build on students' thinking and by studying teachers' orchestration of whole class discussions around student responses to these tasks.

08/01/2022

This study will investigate factors influencing teacher change after professional learning (PL) experiences and will examine the extent to which modest supports for science and engineering teaching in grades 3-5 sustain PL outcomes over the long term, such as increases in instructional time devoted to science, teacher self-efficacy in science, and teacher use of reform-oriented instructional strategies aligned with the Next Generation Science Standards.

09/15/2016

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics. InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research and learn what it means to be a scientist.

07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

07/01/2019

This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.

08/01/2020

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

08/01/2020

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

04/15/2018

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities.

09/01/2017

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

09/01/2017

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

07/01/2019

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

10/01/2020

This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.