The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.
Projects
This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.
This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS).
In this project, over 500 elementary education majors will team with engineering majors to teach engineering design to over 1,600 students from underrepresented groups. These standards-based lessons will emphasize student questioning, constructive student-to-student interactions, and engineering design processes, and they will be tailored to build from students' interests and strengths.
This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.
The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).
This project proposes to study the teaching and learning of algebra in grades 7-9, with a specific focus on the ways in which classroom language explicitly describes properties of and relationships among algebraic objects. The project seeks to investigate the bi-directional relationship between reasoning-rich algebraic discourse and the mathematical meanings students hold for core algebraic concepts such as equations, the equation-solving process, and functions.
This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).
This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.
This project seeks to strengthen statistics and data science instruction in grades 6–12 through the design and implementation of an online professional learning environment for teachers. In partnership with RTI International, the InSTEP project designed and launched instepwithdata.org, an online professional learning platform that supports in-service teachers in developing both deeper content knowledge in statistics and the pedagogical expertise needed to teach statistics and data science effectively in their classrooms.
InSTEP is intentionally designed as a flexible professional learning experience with no fixed sequence of completing activities and modules. Teachers can chart their own learning pathways, engaging with selected resources or the full collection of materials based on their interests and needs. This flexibility allows educators to work at their own pace while deepening their understanding of key aspects of classroom practice, including selecting meaningful data and statistics tasks, facilitating rich classroom discourse, and making thoughtful choices about technology tools.
InSTEP provides two primary types of learning experiences:
Self-Paced Modules. These modules support focused exploration of 7 individual dimensions, helping teachers strengthen both their statistical content knowledge and instructional practice. Together the 7 interconnected dimensions characterize effective learning environments for teaching data science and statistics, as shown in the accompanying diagram. As of January 2026, the platform includes 15 modules spanning the seven dimensions.
Data Investigations. These inquiry-oriented experiences immerse teachers in working with real-world, multivariate datasets using data visualization tools. Each investigation is situated in an authentic context and engages teachers in core Data and Statistical Practices and Central Statistical Ideas. Investigations are organized around the Data Investigation Process (Lee et al., 2022), represented in the puzzle-piece figure. As of January 2026, there are six investigations available.
The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education.
This project will develop and test a professional development program designed for school district science coordinators by examining impacts of participating coordinators on science teachers and their students.
This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.
This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.
This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.
The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.
This project is a professional learning experience for middle school teachers to support them in developing five mathematical practices in their teaching focused on mathematical argumentation - creating mathematical arguments, using appropriate tools strategically, looking for and make use of structure, attending to precision, and looking for and express regularity in repeated reasoning.
This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of addressing specific social needs and empowering people or groups of people.
The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.
This project aims to enact and study the co-design of classroom activities by mathematics and visual arts teachers to promote middle school students' data literacy.
This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.
This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.
This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.
This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.
This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of addressing specific social needs and empowering people or groups of people.
