This project supports the development of a collaborative digital learning environment that embeds rich middle school mathematics tasks. The project aims to understand how students' individual and collaborative engagement in learning mathematics is enhanced by the digital platform, and how student engagement and learning is affected over the course of a year-long seventh grade course.
Projects
This project is producing research syntheses that summarize and make available to practitioners results from research on effective mathematics curricular interventions, teaching practices, and teacher professional development that have been designed to improve achievement by students in Title 1 programs. The project’s goal is to bring together the best resources in both mathematics education and Title I so that programs are better able to serve the mathematical learning and instructional needs of Title I schools.
The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.
The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education.
This project enhances and expands video-based instruction to help prospective and practicing teachers analyze the development of children's mathematical thinking. It trains teachers to: (a) understand from a cognitive developmental psychology perspective how children learn and think about mathematics; (b) assess children's mathematical knowledge and plan instructional activities accordingly; (c) develop an evidence-based understanding of effective and developmentally appropriate teaching methods and curricula; and (d) develop a basic understanding of key mathematical concepts.
This project is exploring how curricula and assessment using dynamic, interactive scientific visualizations of complex phenomena can ensure that all students learn significant science content. Dynamic visualizations provide an alternative pathway for students to understand science concepts, which can be exploited to increase the accessibility of a range of important science concepts. Computer technologies offer unprecedented opportunities to design curricula and assessments using visual technologies and to explore them in research, teaching, and learning.
This project will work with middle school science teachers to design and evaluate a set of data management tools that will be embedded in a web-based science curriculum. The project helps middle school science teachers monitor their students' progress, plan lessons, and reflect on their lessons. This project will identify characteristics of data management tools that are more likely to be used effectively by teachers and have a positive impact on science teaching and learning.
Mississippi State University is identifying characteristics of exemplary African American elementary science teachers and examining the role of mentoring on beginning elementary science teachers and their students.
The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.
This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise. The project will examine the malleable factors affecting the ability of teachers to engage underrepresented students in innovative urban citizen science projects with a focus on the synergistic learning that occurs as teachers, students, scientists, and community members work together on addressing complex socio-scientific issues.