This project will develop a professional development model that allows rural secondary teachers to learn and develop computational thinking related teaching skills with long-term support and scaffolds in place to both build their knowledge and the long-term capacity of their school districts.
Projects
This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.
The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.
The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).
This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.
In this project, over 500 elementary education majors will team with engineering majors to teach engineering design to over 1,600 students from underrepresented groups. These standards-based lessons will emphasize student questioning, constructive student-to-student interactions, and engineering design processes, and they will be tailored to build from students' interests and strengths.
This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to develop teacher leaders, improve teachers' instructional practices, and increase student mathematics understanding and achievement.
This project will explore how a nationally implemented professional development model is applied in two distinct Indigenous communities, the impact the model has on teacher practice in Native-serving classrooms, and the model's capacity to promote the integration of culturally responsive approaches to STEM teaching.
This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.
This project will develop and test a professional development program designed for school district science coordinators by examining impacts of participating coordinators on science teachers and their students.
This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.
In this project, high school engineering teachers will spend five weeks in a research lab devoted to biologically-inspired design, as they partner with cutting-edge engineers and scientists to study animal features and behavior and their applications to engineering designs. After this lab experience, the high school teachers will receive three six- to ten-week curricular units, tailored for tenth- through twelfth-grade students, which teach biologically-inspired design in the context of problems that are relevant to youth.
This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms.
This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).
This project aims to enact and study the co-design of classroom activities by mathematics and visual arts teachers to promote middle school students' data literacy.
This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.
This project addresses a gap between vision and implementation of state science standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations.
This project is a professional learning experience for middle school teachers to support them in developing five mathematical practices in their teaching focused on mathematical argumentation - creating mathematical arguments, using appropriate tools strategically, looking for and make use of structure, attending to precision, and looking for and express regularity in repeated reasoning.
This project will focus on a networked improvement community (NIC) model of professional learning that shifts K-5 science instruction from traditional approaches to a three-dimensional design as outlined in the Next Generation Science Standards. The project will feature a multi-level model involving university educators and researchers and school district practitioners in an effort to co-defined problems of practice valuable to both parties. A mixed methods research design will examine how the NIC model develops professional capital through changes in implementation over multiple iteration.
The aim of this project is to enact and study a process in which middle school teachers of mathematics and visual arts co-design and teach activities that combine math and art to teach data science.
The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.
This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.
The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.
This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.
This CAREER award aims to study the construct of "epistemic empathy" and examine how it can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom. In the context of this project, epistemic empathy is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity aimed at the construction, communication, and critique of knowledge.