This project explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities.
Projects
The project will create a system of online mathematics teacher professional development modules for middle and high school teachers. Teachers will engage in online, asynchronous, high-quality mathematics learning experiences that mirror research-based productive classroom practices and models of instruction that feature active learning and student collaboration, explanation, and discussion.
The goal of this project is to expand high school student participation in the peer-review process and in publishing in JEI, a science journal dedicated to mentoring pre-college students through peer-reviewed publication. By publishing pre-college research in an open access website, the project will build understanding of how engaging in these activities can change high school students' perceptions and practices of scientific inquiry.
The project will develop and study a professional development program focused on fraction for interventionists who work with grades four and five students with mathematics disabilities and difficulties.
This project will develop, test, and refine a "train-the-trainer" professional development model for rural teacher-leaders. The project goal is to design and develop a professional development model that supports teachers integrating culturally relevant computer science skills and practices into their middle school social studies classrooms, thereby broadening rural students' participation in computer science.
This project will help teachers design and facilitate high-quality, real world STEM experiences for students, as teachers move from traditional approaches to organizing their teaching around interdisciplinary questions or problems. The project will work with building administrators to make the structural changes needed for interdisciplinary STEM instruction.
This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.
This project uses a new theoretical framework that specifies criteria for developing scientific thinking skills that include the value that people place on scientific aims, the cognitive engagement needed to evaluate scientific claims, and the scientific skills that will enable one to arrive at the best supported explanation of a scientific phenomenon. The project will work with high school biology teachers to investigate their own understanding of scientific thinking, how it can be improved through professional development, and how this improvement can translate into practice to support student learning.
This project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science.
The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.
The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.
This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.
The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.
Advancing Equity and Strengthening Teaching with Elementary Mathematical Modeling is a teacher PD project focused on strengthening K-5 teaching with mathematics modeling. Building on previous foundational work around mathematics modeling and equity, this project will bring together equity oriented teaching practices and mathematical modeling to design and research the impact of a blended PD program on teacher practice. The project will include video-enhanced reflection and online mentoring in addition to face-to-face components of PD. Using five pivotal spaces for elementary mathematics modeling as a framework, the project will explore the ways in which tools and structures that support practices aligned with pivotal spaces in mathematics modeling lessons can help teachers advance equitable participation and develop student competencies in mathematics modeling. The project will engage in cycles of design-based implementation research (DBIR) to study the relationships between features of the PD and changes in teacher practice, understandings, and dispositions.
Advancing Equity and Strengthening Teaching with Elementary Mathematical Modeling is a teacher PD project focused on strengthening K-5 teaching with mathematics modeling. Building on previous foundational work around mathematics modeling and equity, this project will bring together equity oriented teaching practices and mathematical modeling to design and research the impact of a blended PD program on teacher practice. The project will include video-enhanced reflection and online mentoring in addition to face-to-face components of PD. Using five pivotal spaces for elementary mathematics modeling as a framework, the project will explore the ways in which tools and structures that support practices aligned with pivotal spaces in mathematics modeling lessons can help teachers advance equitable participation and develop student competencies in mathematics modeling. The project will engage in cycles of design-based implementation research (DBIR) to study the relationships between features of the PD and changes in teacher practice, understandings, and dispositions.
To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena. In-person and virtual professional learning experiences will further help teachers who have limited district support for science to incorporate place-based approaches. Participating teachers will range from rural and urban settings in California, Colorado, and Maine to ensure the end products of this project are relevant, scalable, appropriate for a wide range of students across the country.
Advancing Equity and Strengthening Teaching with Elementary Mathematical Modeling is a teacher PD project focused on strengthening K-5 teaching with mathematics modeling. Building on previous foundational work around mathematics modeling and equity, this project will bring together equity oriented teaching practices and mathematical modeling to design and research the impact of a blended PD program on teacher practice. The project will include video-enhanced reflection and online mentoring in addition to face-to-face components of PD. Using five pivotal spaces for elementary mathematics modeling as a framework, the project will explore the ways in which tools and structures that support practices aligned with pivotal spaces in mathematics modeling lessons can help teachers advance equitable participation and develop student competencies in mathematics modeling. The project will engage in cycles of design-based implementation research (DBIR) to study the relationships between features of the PD and changes in teacher practice, understandings, and dispositions.
This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts. Results from the previous project focused on rural teachers and their coaches show that the professional development model increased connections between what teachers notice about student thinking and broader principles of teaching and learning, that teachers were able to enact stronger levels of ambitious mathematics instruction, and that teachers who received coaching showed a stronger focus on math content and instructional practice. This extension of the model to coaches includes an online content-focused coaching course, cycles of one-on-one video-based coaching, and an online video club to analyze coaching practice. The video clubs will be structured as a graduated model that will begin with facilitation by mentor coaches and move into coach participants facilitating their own sessions.
Advancing Equity and Strengthening Teaching with Elementary Mathematical Modeling is a teacher PD project focused on strengthening K-5 teaching with mathematics modeling. Building on previous foundational work around mathematics modeling and equity, this project will bring together equity oriented teaching practices and mathematical modeling to design and research the impact of a blended PD program on teacher practice. The project will include video-enhanced reflection and online mentoring in addition to face-to-face components of PD. Using five pivotal spaces for elementary mathematics modeling as a framework, the project will explore the ways in which tools and structures that support practices aligned with pivotal spaces in mathematics modeling lessons can help teachers advance equitable participation and develop student competencies in mathematics modeling. The project will engage in cycles of design-based implementation research (DBIR) to study the relationships between features of the PD and changes in teacher practice, understandings, and dispositions.
This project will develop a set of educative resources, assessment tools and teacher professional development (PD) activities to support teachers in developing knowledge of CS standards and improving their instructional pedagogy. Teachers will learn to use formative assessments related to these standards to determine student understanding. Improved CS instruction that is responsive to the needs and challenges of the student population is particularly critical in school districts with a large population of students who are typically underserved and under-represented in computer science. The project, a partnership between SRI International and the Milwaukee Public School District, will provide professional development experiences tied to standards instead of a specific curriculum in order to support diverse teachers teaching a variety of computer science curricula using different programming languages. Teachers will receive training via a combination of virtual webinars and face-to-face instruction. Teachers will have opportunities to evaluate their own teaching and measure their students' progress towards the standards.
This project will create a fully online video-based model for mathematics teacher professional development focused on supporting mathematics coaches in rural contexts, building on the investigators' previous work focused on online professional learning opportunities for mathematics teachers in rural contexts. Results from the previous project focused on rural teachers and their coaches show that the professional development model increased connections between what teachers notice about student thinking and broader principles of teaching and learning, that teachers were able to enact stronger levels of ambitious mathematics instruction, and that teachers who received coaching showed a stronger focus on math content and instructional practice. This extension of the model to coaches includes an online content-focused coaching course, cycles of one-on-one video-based coaching, and an online video club to analyze coaching practice. The video clubs will be structured as a graduated model that will begin with facilitation by mentor coaches and move into coach participants facilitating their own sessions.
This project aims to expand opportunities for elementary science in Title 1 schools through the development, implementation, and evaluation of a professional development model that will prepare teachers to effectively utilize science education practices grounded in culturally responsive pedagogy. It provides a new science instruction model that intersects the best practices in science education with the theoretical principles of culturally relevant/responsive pedagogy found to influence students from low economic, diverse communities.
This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.
This award will support teacher practitioners from the U.S. to attend the 2020 International Mind, Brain, and Education Society (IMBES) conference. The IMBES conference is an opportunity for scholars and educators to come together to engage in reciprocal dialogue about research and practice in biology, education, and the cognitive and developmental sciences.
This research project will produce curricular materials designed to help students learn about viral epidemics as both a scientific and social issue. It will engage students in scientific modeling of the epidemic and in critical analyses of media and public health information about the virus. This approach helps students connect their classroom learning experiences with their lives beyond school, a key characteristic of science literacy.