This project develops a series of interactive on-line games and investigates the effect these games have on increasing middle school science students' and teachers' knowledge and skills of scientific argumentation. There are four areas of argumentation addressed by the games: (1) understanding a claim, (2) judging the evidence about a claim based on type and quality (objectivity, reliability or validity), (3) analyzing the reasoning applied to the claim, and (4) evaluating the claim.
Projects
SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.
This research and development project develops and tests in the classroom three fifth-grade and two second-grade science units that combine both socio-cultural and socio-cognitive perspectives in order to more fully engage both students and teachers in authentic inquiry and tests the units in second- and fifth-grade classrooms.
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education that for over forty years introduce science, mathematics and engineering to students traditionally underrepresented in the discipline. This project examines the influences MESA activities (field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement) have on students' perception of engineering, their self-efficacy and interest in engineering, and their subsequent decisions to pursue careers in engineering.
This exploratory study develops and pilot-tests a model for improving science teaching and learning with middle school ELLs. Study goals include: (1) clarifying pedagogical constructs of language-rich science inquiry and the academic language of science and their relationships across the learning contexts of middle school science classrooms, teacher professional development and family science workshops, (2) developing and refining instruments to study these constructs in context, and (3) conducting pilot tests of the model and instruments.
This project will explore how new mobile and web-based technologies can support content-rich nomadic inquiry; that is, science inquiry that takes place on-the-go, across integrated K-12 formal and informal settings. Students will begin the inquiry process in the classroom using curricular activities and the Zydeco web software developed in the project to help define goals and questions and to design data collection strategies and categories for use on a field trip to an informal setting.
This project develops and assesses the effectiveness of integrating three computation-based technologies into curricular modules: agent-based modeling (ABM), real-world sensing, and collaborative classroom networks. The STEM disciplines addressed are life sciences and physical sciences at middle and high school levels, specifically Evolution, Population Biology/Ecology, Kinetic Molecular Theory, and Electromagnetism.
This project will synthesize existing literature on modeling-based instruction (MBI) in K-12 science education over the last three decades. It will rigorously code and examine the literature to conceptualize the landscape of the theoretical frameworks of MBI approaches, identify the effective design features of modeling-based learning environments with an emphasis on technology-enhanced ones, and identify the most effective MBI practices that are associated with successful student learning through a meta-analysis.
This project is developing and testing a set of 12 curriculum modules designed to engage high school students and their teachers in the process of applying computational concepts and methods to problem solving in a variety of scientific contexts. The project perspective is that computational thinking can be usefully thought of as a specialized form of mathematical modeling.
The goal of this project is to improve the quality of middle school science in a select number of schools and to gain insight into effective science professional development practice more generally. The project will focus on the following objectives: (1) increasing the quantity and quality of inquiry-based instruction; (2) facilitating the development and implementation of inquiry-based instruction; and (3) improving student achievement in middle school science classrooms.
This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.
This project investigates the educational value of computer technologies for learning engineering. The project engages high school students to design, build, and evaluate an energy-efficient model house with the aid of computer simulation and design tools.
The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
This project is revising and field testing six existing modules and developing, pilot testing, and field testing two engineering modules for required middle school science and mathematics classes: Catch Me if You Can! with a focus on seventh grade life science; and Creating Bioplastics targeting eighth grade physical science. Each module addresses an engineering design challenge of relevance to industries in the region and fosters the development of engineering habits of mind.
The goals of STEM instruction are to educate a populace that is scientifically and mathematically literate and who can solve real-world problems by applying science and mathematics. This exploratory project is designed to study the effectiveness of professional development focused on the integration of mathematics and science instruction, mediated by technology tools, to improve middle school teachers' ability to teach scientific inquiry and mathematical problem solving.
This project provides visionary leadership to the education community by (a) identifying and analyzing the needs and opportunities for future STEM curriculum development and (b) recommending policy positions and actions by funding agencies and STEM educators regarding the development and implementation of STEM school curricula.
This project addresses biology teachers and students at the high school level, responding to the exponential increases occurring in biology knowledge today and the need for students to understand the experimental basis behind biology concepts. The project studies the feasibility of engaging students in an environment where they can learn firsthand how science knowledge develops in the fields of bioinformatics and DNA science by performing collaborative, simulated experiments to solve open-ended problems.
This project is developing and testing a prototype electronic teacher's guide for a 12-week genetics unit in the NSF-funded curriculum titled Foundation Science: Biology to determine how it impacts high school teachers' learning and practice. The electronic guide, which is based on an existing print guide, has a flexible design so that it anticipates and meets the curriculum planning and support needs of teachers with different knowledge/skills profiles.
This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"
This project is developing a system for producing automated professional mentoring while students play computer games based on STEM professions. The project explores a specific hypothesis about STEM mentoring: A sociocultural model as the basis of an automated tutoring system can provide a computational model of participation in a community of practice, which produces effective professional feedback from nonplayercharacters in a STEM learning game.
This project is developing, validating, and evaluating computer modeling-based formative assessments to improve student learning in chemistry. Activities include developing a series of computer models related to key topics in high school chemistry, developing questions to probe student understanding of matter and energy, identifying teaching and learning resources appropriate for different levels of student conceptual understanding, and developing professional development resources on integrating formative assessments into high school chemistry courses.
We developed and tested two ecology case study units for urban high school students underserved in their connection to nature. The case studies, based on digital media stories about current science produced by the American Museum of Natural History, use current scientific data to link ecological principles to daily life and environmental issues. Preliminary testing results show that treatment students made significantly higher gains than the control students on the project's major learning goals.
This project is refining and testing two case study units on contemporary issues in ecology for urban middle and high school students underserved in their connection to nature. The case studies are based on two Science Bulletins, digital media stories about current science produced by the American Museum of Natural History (AMNH), which use current scientific data to link ecological principles to real-world environmental issues, and to link issues to human daily life.
This project contributes to the emerging knowledge base for reform-minded middle school STEM instructional materials development through the development, field-testing, and evaluation of a prototype instructional materials module specifically designed to stimulate and sustain urban-based students’ interest in STEM. The module includes guided inquiry-oriented activities thematically linked by the standards-aligned concept of energy transfer, which highlight the fundamental processes and integrative nature of 21st century scientific investigation.
This project is developing 24 activities that span three years of a Physics high school science curriculum. The activities cover four themes: motion and energy, charge, structure, and light. This study aims to determine the extent to which exposure to these activities in one year influences performance on activities in a subsequent year and the extent to which students can recall concepts from prior years and apply them to new activities in a different discipline.