This project collects evidence supporting the validity of test instruments and initial characterization of high school teachers' background and use of materials and pedagogies. The project is constructing and validating multiple forms of test instruments that can be used for the evaluation of interventions (e.g. professional development, implementation of new curricula) and the measurement of aspects of teacher knowledge (e.g. subject matter, knowledge of student misconceptions).
Projects
The purpose of this project is to leverage ongoing efforts related to science education and the current emergency and disaster recovery landscape in Puerto Rico. It will develop culturally relevant project-based science lesson plans that incorporate the disaster context that can be implemented both inside and outside of the traditional classroom. The project will allow displaced students to continue learning under the guidance of teachers, parents or social workers. The project will train educators in the use of disaster-related problem-based lessons and assess project implementation and the impact of the lessons. The final outcome of this aim will be a lesson plan template and implementation guidelines for other jurisdictions faced by natural disasters.
This project will engage in a community-wide effort to synthesize the literature from a broad range of fields and to use the findings to create frameworks that will guide the planning, implementation, and scale-up of efforts to improve geographic education over the next decade. This will result in a set of publicly reviewed, consensus reports that will guide collaborative efforts and broaden awareness of the acute need for geographic literacy and geographic science education.
As STEM education researchers work to improve STEM teaching and learning in schools and districts across the nation, rural communities are often overlooked. There is a definite critical need for STEM education research focused on rural communities. Rural schools typically have less funding for STEM programs, have trouble recruiting and retaining quality STEM teachers, and have less access to STEM learning opportunities. Yet, rural communities possess an abundance of ingenuity, resourcefulness, and collective problem-solving skills. This project works to address this need by bringing together researchers, rural educators, and workforce leaders in rural communities to support the mutual exchange of knowledge and learning around pressing problems in rural K-12 STEM education, understanding rural ingenuity within teaching STEM, and STEM education's connection with the local workforce.
This project will engage teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.
This project envisions a future of work where advanced technologies provide automated, job-embedded, individualized feedback to drive professional learning of the future worker. To achieve this goal, it addresses a fundamental question: Are evaluative or non-evaluative feedback systems more effective in driving professional learning? This question will be tested on professionals where objective, fine-grained feedback is especially critical to improvement--the teaching professions. This research will be situated within English and language arts (ELA) instruction in middle and high school classrooms, where underperformance and inequality in literacy outcomes are persistent problems facing the U.S. Current methods of supporting teacher learning through feedback are sparse, cumbersome, subjective, and evaluative. Thus, a major reconceptualization is needed to provide feedback mechanisms that- meaningfully affect teacher practice and are accessible to all. In partnership with TeachFX, an industry leader in technology-enabled instructional feedback, this project will work with teachers to design and test systems of automated feedback. Insights from the study will lead to feedback systems that empower teaching professionals, generate continued professional learning, and ultimately, increase student achievement.
One crucial predictor of success in STEM disciplines is spatial reasoning ability, which involves mentally manipulating and representing objects in space. However, STEM courses often neglect the purposeful development of spatial reasoning skills, and limited knowledge exists on effective training methods. This project aims to address this gap by: 1) identifying neural and cognitive processes associated with successful mental rotation, a fundamental aspect of spatial reasoning; 2) assessing the responsiveness of these processes to training; and 3) measuring the transfer of training effects to real-world STEM problems, specifically focusing on introductory chemistry.
This conference focuses on the use of virtual/mixed reality simulation in the preparation of secondary science teachers. The conference convenes experts in simulation in teacher preparation, practicing high school teachers, and teacher candidates to engage in a design process related to mixed reality simulations. Conference attendees will identify important gaps in science teacher preparation and design prototype simulation environments for addressing those gaps.
This development and research project designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.
This project investigates the educational value of computer technologies for learning engineering. The project engages high school students to design, build, and evaluate an energy-efficient model house with the aid of computer simulation and design tools.
This exploratory project will design, pilot, and evaluate a 10-week, energy literacy curriculum unit for a program called Energy and Your Environment (EYE). In the EYE curriculum, students will study energy use and transfer in their own school buildings. They will explore how Earth systems supply renewable and nonrenewable energy, and how these energy sources are transformed and transferred from Earth systems to a school building to meet its daily energy requirements.
Early childhood educators (ECEs) understand that effective science teaching and learning requires content knowledge related to science concepts and practices and pedagogical knowledge. However, ECEs, especially in rural communities, express a lack of science content knowledge and confidence in incorporating science-related conversations in their early care and education settings, and they believe this might be a result of limited professional training relevant to science content. This project aims to strengthen key capabilities in ECEs, including the ability to (1) build science content knowledge and confidence in guiding young children's scientific investigation, (2) closely observe children's interactions with science materials, and (3) use those observations in the reflection, planning, and practice of science teaching.
The ReaL Earth Inquiry project empowers teachers to employ real-world local and regional Earth system science in the classroom. Earth systems science teachers need the pedagogic background, the content, and the support that enables them to engage students in asking real questions about their own communities. The project is developing online "Teacher-Friendly Guides" (resources), professional development involving fieldwork, and inquiry-focused approaches using "virtual fieldwork experiences."
This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms.
This project is revising and field testing six existing modules and developing, pilot testing, and field testing two engineering modules for required middle school science and mathematics classes: Catch Me if You Can! with a focus on seventh grade life science; and Creating Bioplastics targeting eighth grade physical science. Each module addresses an engineering design challenge of relevance to industries in the region and fosters the development of engineering habits of mind.
This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events.
The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciences—the relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.
The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciences—the relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.
This project is developing five web-based modules for middle school science that engage students in student-directed inquiry and provide teachers with professional development in facilitating this inquiry. These modules immerse students in virtual environments for learning (VELs) where they take on the role of scientists engaged in a complex task. The virtual settings presented in the VELs support students in designing and carrying out their own investigations.
Navigating complex societal issues such as water shortages, forest fires, and other phenomena-based problems requires understanding the social, technological, and scientific dimensions surrounding the issues and they ways these dimensions interact, shift, and change. Despite its importance, however, developing students’ socioscientific literacy has received limited attention in elementary science teaching and learning contexts. This project begins to address this problem of practice by focusing first on developing elementary teachers’ socioscientific literacy and their capacity to integrate socioscientific issues and local phenomena in their science teaching practice.
This project develops and assesses the effectiveness of integrating three computation-based technologies into curricular modules: agent-based modeling (ABM), real-world sensing, and collaborative classroom networks. The STEM disciplines addressed are life sciences and physical sciences at middle and high school levels, specifically Evolution, Population Biology/Ecology, Kinetic Molecular Theory, and Electromagnetism.
Scientific literacy is an important educational goal, and the way scientists communicate is key to how science, as an institution, succeeds in its work. Conveniently, the recent and rapid rise of preprint publication platforms means that the public now has greater access to scientific communication and dialogue that occurs through open peer review. This is driving the need to educate students on, and engage them in, the evolving ways in which scientists construct and communicate knowledge. The goal of this project is to engage students in authentic science communication innovations through the implementation of a preprint and peer-review platform specifically designed for high school students.
The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.
Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.
Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.
