Projects

09/15/2009

This project is developing and testing a prototype electronic teacher's guide for a 12-week genetics unit in the NSF-funded curriculum titled Foundation Science: Biology to determine how it impacts high school teachers' learning and practice. The electronic guide, which is based on an existing print guide, has a flexible design so that it anticipates and meets the curriculum planning and support needs of teachers with different knowledge/skills profiles.

10/01/2007

This project is conducting an empirical analysis of NAEP assessment items in science to determine whether evidence supports the hypothesis that standardized tests capture only a limited amount of student knowledge because of their cultural background. The investigator will create a model of test design more likely to extract student knowledge from students of varied cultures by expanding items’ content. The study will examine the experience of American Indian groups, Alaska Natives, and Pacific Islanders.

08/15/2010

This project conducts interdisciplinary research to advance understanding of embodied learning as it applies to STEM topics across a range of current technology-based learning environments (e.g., desktop simulations, interactive whiteboards, and 3D interactive environments). The project has two central research questions: How are student knowledge gains impacted by the degree of embodied learning and to what extent do the affordances of different technology-based learning environments constrain or support embodied learning for STEM topics?

07/15/2022

The project will design, develop, and test a research-based professional development (PD) approach that will ensure that teachers, and ultimately their middle-school students, have the knowledge to act in a way that promotes zero net loss of biodiversity in their communities. Through their participation in the PD, teachers will be equipped to plan for and implement NGSS-aligned instruction, facilitate student identification and understanding of biodiversity and environmental justice issues in their local community, and foster student capacity to take action. Students will come to understand that biodiversity is a global issue that they can influence at the local level, and will become empowered, in both their knowledge and their agency, to be leaders in solving biodiversity problems in their communities.

09/01/2014

This project  will develop a video recording and analysis system called VideoReView (VRV) that allows grade four science teachers to record, tag, and analyze video in their classroom in real time. The investigators will then study and enhance the system in the context of professional learning communities of teachers. 

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/01/2021

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.

08/01/2010

This project develops and assesses the effectiveness of integrating three computation-based technologies into curricular modules: agent-based modeling (ABM), real-world sensing, and collaborative classroom networks. The STEM disciplines addressed are life sciences and physical sciences at middle and high school levels, specifically Evolution, Population Biology/Ecology, Kinetic Molecular Theory, and Electromagnetism.

09/01/2024

Navigating complex societal issues such as water shortages, forest fires, and other phenomena-based problems requires understanding the social, technological, and scientific dimensions surrounding the issues and they ways these dimensions interact, shift, and change. Despite its importance, however, developing students’ socioscientific literacy has received limited attention in elementary science teaching and learning contexts. This project begins to address this problem of practice by focusing first on developing elementary teachers’ socioscientific literacy and their capacity to integrate socioscientific issues and local phenomena in their science teaching practice.

09/01/2006

This project is developing five web-based modules for middle school science that engage students in student-directed inquiry and provide teachers with professional development in facilitating this inquiry. These modules immerse students in virtual environments for learning (VELs) where they take on the role of scientists engaged in a complex task. The virtual settings presented in the VELs support students in designing and carrying out their own investigations.

08/01/2023

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciencesthe relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

08/01/2023

The goal of this project is to study how secondary students come to understand better an underlying logic of natural sciencesthe relation between construction of new ideas and critique of them. Science education has traditionally focused mostly on how students construct models of natural phenomena. However, critique is crucial for iterative refinement of models because in professional science, peer critique of explanatory models motivates and guides progress toward better understanding. This project engages students in this process and helps them understand the relation of critique to better explanations, by focusing students on the criteria by which critique and understanding develop together through classroom discussions.

09/01/2017

This project will develop, implement, test, and revise instructional approaches and materials for high school students that focus on the links between scientific evidence and alternative explanations of phenomena relating to Earth and space education. Students will learn to construct diagrams showing the links between explanatory models of natural phenomena and lines of evidence, and then evaluate the plausibility of various alternative explanations for events.

09/15/2009

This project is revising and field testing six existing modules and developing, pilot testing, and field testing two engineering modules for required middle school science and mathematics classes: Catch Me if You Can! with a focus on seventh grade life science; and Creating Bioplastics targeting eighth grade physical science. Each module addresses an engineering design challenge of relevance to industries in the region and fosters the development of engineering habits of mind.

09/01/2014

This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms. 

08/15/2007

The ReaL Earth Inquiry project empowers teachers to employ real-world local and regional Earth system science in the classroom. Earth systems science teachers need the pedagogic background, the content, and the support that enables them to engage students in asking real questions about their own communities. The project is developing online "Teacher-Friendly Guides" (resources), professional development involving fieldwork, and inquiry-focused approaches using "virtual fieldwork experiences."  

09/01/2023

Early childhood educators (ECEs) understand that effective science teaching and learning requires content knowledge related to science concepts and practices and pedagogical knowledge. However, ECEs, especially in rural communities, express a lack of science content knowledge and confidence in incorporating science-related conversations in their early care and education settings, and they believe this might be a result of limited professional training relevant to science content. This project aims to strengthen key capabilities in ECEs, including the ability to (1) build science content knowledge and confidence in guiding young children's scientific investigation, (2) closely observe children's interactions with science materials, and (3) use those observations in the reflection, planning, and practice of science teaching.

09/01/2020

This exploratory project will design, pilot, and evaluate a 10-week, energy literacy curriculum unit for a program called Energy and Your Environment (EYE). In the EYE curriculum, students will study energy use and transfer in their own school buildings. They will explore how Earth systems supply renewable and nonrenewable energy, and how these energy sources are transformed and transferred from Earth systems to a school building to meet its daily energy requirements.

10/01/2009

This project investigates the educational value of computer technologies for learning engineering. The project engages high school students to design, build, and evaluate an energy-efficient model house with the aid of computer simulation and design tools. 

09/01/2011

This development and research project designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

01/01/2021

This conference focuses on the use of virtual/mixed reality simulation in the preparation of secondary science teachers. The conference convenes experts in simulation in teacher preparation, practicing high school teachers, and teacher candidates to engage in a design process related to mixed reality simulations. Conference attendees will identify important gaps in science teacher preparation and design prototype simulation environments for addressing those gaps.

07/01/2023

One crucial predictor of success in STEM disciplines is spatial reasoning ability, which involves mentally manipulating and representing objects in space. However, STEM courses often neglect the purposeful development of spatial reasoning skills, and limited knowledge exists on effective training methods. This project aims to address this gap by: 1) identifying neural and cognitive processes associated with successful mental rotation, a fundamental aspect of spatial reasoning; 2) assessing the responsiveness of these processes to training; and 3) measuring the transfer of training effects to real-world STEM problems, specifically focusing on introductory chemistry.

11/01/2023

This project envisions a future of work where advanced technologies provide automated, job-embedded, individualized feedback to drive professional learning of the future worker. To achieve this goal, it addresses a fundamental question: Are evaluative or non-evaluative feedback systems more effective in driving professional learning? This question will be tested on professionals where objective, fine-grained feedback is especially critical to improvement--the teaching professions. This research will be situated within English and language arts (ELA) instruction in middle and high school classrooms, where underperformance and inequality in literacy outcomes are persistent problems facing the U.S. Current methods of supporting teacher learning through feedback are sparse, cumbersome, subjective, and evaluative. Thus, a major reconceptualization is needed to provide feedback mechanisms that- meaningfully affect teacher practice and are accessible to all. In partnership with TeachFX, an industry leader in technology-enabled instructional feedback, this project will work with teachers to design and test systems of automated feedback. Insights from the study will lead to feedback systems that empower teaching professionals, generate continued professional learning, and ultimately, increase student achievement.

08/01/2019

This project will engage teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.