This project will develop and test a digital platform for middle school mathematics classrooms to help students deepen and communicate their understanding of mathematics. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class.
Projects
The project will develop and study a professional development program focused on fraction for interventionists who work with grades four and five students with mathematics disabilities and difficulties.
Technical assistance is being provided to key leaders in state education agencies (SEAs) to: 1) build SEA leaders' knowledge about effective mathematical professional development research; 2) deepen their understanding about necessary supports and structures that should be in place; and 3) enable SEA leaders to incorporate what they learn and analyze to their existing mathematics college- and career-readiness standards implementation plans.
This project envisions a future of work where advanced technologies provide automated, job-embedded, individualized feedback to drive professional learning of the future worker. To achieve this goal, it addresses a fundamental question: Are evaluative or non-evaluative feedback systems more effective in driving professional learning? This question will be tested on professionals where objective, fine-grained feedback is especially critical to improvement--the teaching professions. This research will be situated within English and language arts (ELA) instruction in middle and high school classrooms, where underperformance and inequality in literacy outcomes are persistent problems facing the U.S. Current methods of supporting teacher learning through feedback are sparse, cumbersome, subjective, and evaluative. Thus, a major reconceptualization is needed to provide feedback mechanisms that- meaningfully affect teacher practice and are accessible to all. In partnership with TeachFX, an industry leader in technology-enabled instructional feedback, this project will work with teachers to design and test systems of automated feedback. Insights from the study will lead to feedback systems that empower teaching professionals, generate continued professional learning, and ultimately, increase student achievement.
The project will create a digital environment for middle school mathematics teachers that is combined with a student collaborative platform for a problem-solving curriculum. The goal is to design and develop the digital collaborative platform so networks of teachers can create, use, and share teaching resources for planning, enactment, and reflection on student thinking.
This project will engage teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.
As STEM education researchers work to improve STEM teaching and learning in schools and districts across the nation, rural communities are often overlooked. There is a definite critical need for STEM education research focused on rural communities. Rural schools typically have less funding for STEM programs, have trouble recruiting and retaining quality STEM teachers, and have less access to STEM learning opportunities. Yet, rural communities possess an abundance of ingenuity, resourcefulness, and collective problem-solving skills. This project works to address this need by bringing together researchers, rural educators, and workforce leaders in rural communities to support the mutual exchange of knowledge and learning around pressing problems in rural K-12 STEM education, understanding rural ingenuity within teaching STEM, and STEM education's connection with the local workforce.
The goals of this project are to 1) develop methods for analyzing data collected to document the institutional setting of mathematics teaching that are specific to equity and access for all middle school students to high quality mathematics instruction; and 2) develop an instrument for assessing the quality of mathematics instruction that focuses specifically on the extent to which all students are supported to substantially participate in academically rigorous mathematics.
High-quality early educational experiences, particularly in mathematics, are crucial for students’ success in K-12 schooling. To create these foundational experiences for young children, early childhood educators need opportunities to enhance their mathematics teaching through job-embedded, sustained professional learning. This partnership development project establish a collaboration among early childhood mathematics educators, school and district leaders, the state department of education, and university faculty in Delaware that aims to enhance children’s early mathematics learning by collaboratively designing support systems for strengthening their teachers’ professional learning.
Tutoring programs that are jointly supported by schools and universities can offer benefits to both parties. The programs, however, are only helpful to the extent they respond to the needs and interests of the students and schools they serve. This project will establish a partnership between a large, urban university and a small, rural high school to collaboratively create a tutoring program to support the mathematics learning of students with learning disabilities.
This is a 3.5-year efficacy study of the Developing Mathematical Ideas (DMI) elementary math teacher professional development (PD) program. DMI is a well-known, commercially available PD program with substantial prior evidence showing its impact on elementary teachers' mathematical and pedagogical knowledge. However, no studies have yet linked DMI directly with changes in teachers' classroom practice, or with improved student outcomes in math. This study aims to remedy this gap.
This project’s overarching goal is to evaluate the assessment components embedded within two NSF-supported mathematics curricula: Everyday Mathematics and Math Trailblazers. The investigators will apply a comprehensive validity perspective that integrates a variety of empirical evidence regarding the cognitive, psychometric, and instructional affordances of multiple assessments embedded in these curricula as part of their overall instructional design.
This study examines the impact of the newly revised Advanced Placement (AP) Biology and Chemistry courses on students' understanding of and ability to utilize scientific inquiry, on students' confidence in engaging in college-level material, and on students’ enrollment and persistence in college STEM majors. The project provides estimates of the impact of students' AP-course taking on their progress into postsecondary educational experiences and their intent to continue to prepare to be future engineers and scientists.
This exploratory project is studying the use of mathematics and science specialist teachers in elementary schools. The first four studies are in six school districts in Washington State. They are characterizing and categorizing the specialists, investigating the content knowledge, preparation and needs of these teachers, determining their instructional effectiveness, and determining their impact on student learning and attitudes towards mathematics and science.
Understanding the impact of STEM education efforts requires researchers to have cutting-edge knowledge of advanced research methods and the ability to translate research knowledge to multiple and diverse stakeholder audiences. The Evidence Quality and Reach (EQR) Hub project will work explicitly to strengthen these two competencies through focused work with the Discovery Research PreK-12 research community. The hub will develop and implement workshops and learning opportunities for researchers in the community, convene communities of practice to discuss specific research methods, and engage in individualized consultations with DRK-12 projects.
Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, this project seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it.
This project aims to elaborate a structure for practice-oriented, collaborative professional development that increases the capacities for collaborative learning by facilitating teacher-to-teacher interactions within and across cultural contexts. By convening international groups of teachers to design lessons and provide and respond to commentaries on their lesson designs, the project introduces possibilities for surfacing and disrupting common experiences, assumptions, and norms in US mathematics teaching.
This project conducts research on knowledge that contributes to successful coaching in two domains: coaching knowledge and mathematics content knowledge. The influence of these knowledge domains on both coaches and teachers is being examined in two ways: (1) by investigating correlations between assessments of coach and teacher knowledge and practice in each domain and (2) by investigating causal effects of targeted professional development for coaches.
We are analyzing the intended algebra curriculum as represented in a variety of high-school mathematics textbooks – Core Plus Mathematics Project (CPMP), Discovering Mathematics (Key Curriculum Press), EDC's Center for Mathematics Education, Glencoe, Interactive Mathematics Program (IMP), and University of Chicago School Mathematics Project (UCSMP). The textbook analysis is based on two dimensions frequently used for curriculum analysis: a content dimension and a cognitive dimension.
In this project, the investigators will explore different ways that elementary school teachers participate in online learning in a platform that includes videos, discussions, and other resources for mathematics teaching. Knowing that teachers may use the platform to different degrees depending on their interest and time available, the study will investigate how different profiles of participation influence teachers' learning.
In this project, the investigators will explore different ways that elementary school teachers participate in online learning in a platform that includes videos, discussions, and other resources for mathematics teaching. Knowing that teachers may use the platform to different degrees depending on their interest and time available, the study will investigate how different profiles of participation influence teachers' learning.
In this project, the investigators will explore different ways that elementary school teachers participate in online learning in a platform that includes videos, discussions, and other resources for mathematics teaching. Knowing that teachers may use the platform to different degrees depending on their interest and time available, the study will investigate how different profiles of participation influence teachers' learning.
The purpose of this project is to further develop, refine, and evaluate a research-based STEM learning tool (i.e. block play) that tests theories of mathematical learning. The first objective is to empirically evaluate the impacts of different types of block play on children’s mathematics. The second objective is to evaluate the extent to which children’s mathematical language (spatial and quantitative), spatial skills, and executive function are mechanisms that link block play with children’s mathematical learning. Results from this study will contribute to the theoretical understanding of how and why block play may influence the development of early mathematics, a key component of STEM and school readiness, and will advance the research base about low-cost, feasible, and effective strategies for improving children's mathematics learning.
This research synthesis study reviews the effects of professional learning interventions and will advance STEM educators' understanding of the critically important relationships among teacher professional learning (PL), teacher knowledge and practice, and average student effects. Understanding these relationships will allow the field to design better PL experiences for teachers that truly benefit student learning.
This study can provide a basis for design research focused on developing effective materials and programs for flipped instruction in secondary mathematics, which is already occurring at an increasing rate, but it is not yet informed by empirical evidence. This project will result in a framework for flipped instruction robust enough to be useful at a variety of grade levels and contexts. The framework will provide a better understanding of the relationships among various implementations of flipped instruction and student learning.
