Teachers

Building Networks and Enhancing Diversity in the K-12 STEM Teaching Workforce

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2040784
Funding Period: 
Tue, 12/01/2020 to Tue, 11/30/2021
Full Description: 

The goal of this planning grant is to explicitly focus on broadening participation in the K-12 STEM teaching workforce, with the theory of action that diversifying the K-12 STEM teaching workforce would in the long term help more students see STEM as accessible to them and then be more likely to choose a STEM degree or career. Currently there is a large demographic discrepancy between students and teachers in K-12 schools. Studies have highlighted that the diverse teaching workforce benefits not only students of color but all students. Since 2017, the Smithsonian Science Education Center has conducted an annual STEM Diversity Summit, with the goal of building a coalition (built on collective impact) for attracting and retaining a diverse K-12 STEM teaching workforce, in which teams of teachers and administrators representing 83 school districts, schools, and states across the country shared their problems and developed a logic model to attract and retain a diverse K-12 STEM teaching workforce in their region with annual support from a matched mentor. This planning grant supports revisiting those former teams to better understand the dynamics of systems change through close examination of the successes and challenges outlined in their logic models with the perspective of the Cultural-Historical Activity Theory (CHAT). Under the collaborative infrastructure elements of shared vision and partnerships, this planning grant will inform and lay the foundation for a future alliance focused on diversifying the K-12 STEM teaching workforce.

In this planning grant, the Smithsonian in collaboration with Howard University, as well as in partnership with other experts in STEM teacher education, professional development, and diversityincluding from Harvard University, Rutgers University, 100kin10, National Board for Professional Teaching Standards, MA Department of Higher Education, STEM Equity Alliance, National Science Teaching Association, and private industrywill work on four primary activities. First, a survey will be developed and conducted with faculty members of Institutions of Higher Education (IHEs), including approximately 100 Minority Serving Institutions, which serve diverse populations in K-12 teacher preparation programs and STEM education across the country. The goal of the survey is to understand what roles IHEs play in organizational change management and strategic planning to diversify the K-12 STEM teaching workforce. Second, a virtual workshop will be convened to bring former STEM Diversity Summit attendees and their extended networks to reflect on their progress and activities in past years and discuss strategic long-term plans. Third, a survey with the virtual workshop participants will be conducted to better understand their practices, attitudes, and perceptions about their roles to create culturally diverse ecosystems in K-12 STEM education. Finally, all the collected information from the above activities will be used to investigate strategies and evidence-based practices of enhancing diversity in the K-12 STEM teaching workforce, and an iterative source book will be developed based on those findings as an initial resource to ground future work. Over a 12 month period, this planning grant will build a network between the former teams and with the extended partners, including the NSF INCLUDES National Network, and help them to grow as regional hubs within a Future NSF INCLUDES Alliance focused on diversifying the K-12 STEM teacher workforce, with the Smithsonian as the backbone organization.

Improving Evaluations of STEM Programs: An Empirical Investigation of Key Design Parameters

This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts, and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level.

Lead Organization(s): 
Award Number: 
2000388
Funding Period: 
Mon, 06/15/2020 to Wed, 05/31/2023
Full Description: 

To improve science, technology, engineering, and mathematics (STEM) outcomes in K-12 classrooms, it is critical to understand the landscape of the STEM learning environment. However, the STEM learning environment is complex. Students are nested within teachers, and teachers are nested within schools (which in turn are nested within districts), which implies a multilevel structure. To date, most empirical research that uses multilevel modeling to examine the role of higher levels on variation in student outcomes does not examine the teacher level. The reason is that for many states, data linkages between students and teachers have been difficult to achieve. However, in the last five years, this situation has improved in many states, which makes this work now possible. This study seeks to further understanding of the STEM learning environment by 1) examining the extent to which mathematics and science achievement varies across students, teachers, schools, and districts and 2) examining the extent to which student, teacher, school, and district characteristics that are found in state administrative databases can be used to explain this variation at each level. This work will support advances in research and evaluation methodologies that will enable researchers to design more rigorous and comprehensive evaluations of STEM interventions and improve the accuracy of statistical power calculations. Broad dissemination of the resulting tools and techniques will provide access through freely available websites, and workshops and training opportunities to build capacity in the field for STEM researchers to design cluster randomized trials (CRTs) to answer questions beyond what works to for whom and under what conditions.

This project will contribute to 1) describing and explaining the landscape of the STEM learning environment, an environment which includes students, teachers, and schools, and 2) applying this empirical information in the design of STEM intervention studies to enable researchers to extend beyond the usual questions about if the intervention works and for which types of students or schools. By adding teacher level variables, this analysis would account for key teacher characteristics that may moderate the treatment effect. The research will also increase the efficiency in the design of CRTs of STEM interventions. Specifically, the findings from this study will improve the internal validity and cost-efficiency of evaluations of STEM interventions by increasing the accuracy of estimates for the full range of parameters needed to conduct power analyses, particularly when the teacher level is included. The high cost associated with CRTs makes it critical to plan accurate trials that do not overestimate the required sample size, and hence cost more than necessary, or underestimate the sample size and thereby reduce the potential to generate high-quality evidence of program effectiveness. Including the teacher level in intervention studies, a critical level in the delivery of any intervention, will allow for more testing of teacher characteristics that may moderate intervention effects.

Professional Development to Support an Elementary School Science and Integrated Language Curriculum

To help address the need for science classrooms that support language learning for all students, this project will rigorously study the Science and Integrated Language (SAIL) curriculum, a year-long fifth-grade curriculum aligned to current science curriculum standards with a focus on English learners.

Lead Organization(s): 
Award Number: 
2035103
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

The nation's diverse and rapidly changing student demographics includes the rise of English learners, the fastest growing student population. Such demographic shifts highlight the importance of promoting and fostering science classrooms that support language learning for all students, including English learners. To help address this need, this project will rigorously study the Science and Integrated Language (SAIL) curriculum, a year-long fifth-grade curriculum aligned to current science curriculum standards with a focus on English learners. SAIL is grounded in design principles that are based on current research on children's science learning and second language acquisition. The curriculum includes four units that focus on central, driving questions (e.g., What happens to our garbage? or Why do falling stars fall?) to anchor the key physical and life science concepts of interest. The SAIL curriculum was originally developed with a prior DRK-12 grant using iterative cycles of development, field testing, and refinement. The project has three main objectives. First, the team will develop a teacher professional development program to support classroom implementation of SAIL. Second, the project will develop and validate the instruments needed to study the intervention and its impacts on teachers and students. Third, a quasi-experimental field trial will be conducted to assess the SAIL intervention's impacts on teachers and students.

The team will spend first year refining and iteratively developing the SAIL professional development package along with the measures to be used in the field trial. This is followed by the quasi-experimental study, which includes a treatment group of 15 elementary schools. A matched comparison group of 15 elementary schools will be obtained using propensity score matching at the school, teacher, and student levels. Fifth-grade science teachers will participate for 2 years, while two cohorts of fifth-grade students will participate for 1 year each. Measures will focus on student science learning with particular attention to English learner students and observations of teachers' instructional practices. Data will be analyzed using multi-level models accounting for nesting of students within teachers which, in turn, are nested within schools. At the completion of the project the team will have produced: (1) a fully documented professional development program to support teacher implementation of the SAIL curriculum, (2) measures needed to rigorously study the intervention and its impacts on teachers and students, and (3) further evidence of the potential effects of the SAIL intervention on teachers and students through a rigorous quasi-experimental field study.

Anchoring High School Students in Real-Life Issues that Integrate STEM Content and Literacy

Through the integration of STEM content and literacy, this project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue.

Lead Organization(s): 
Award Number: 
2010312
Funding Period: 
Sat, 08/15/2020 to Sun, 07/31/2022
Full Description: 

The STEM Literacy Project sets out to support student learning through developing teacher expertise in collaborative integration of STEM in student writing and literacy skills development. Facilitated by teachers, students will read, discuss, and then write about real-world STEM scenarios, such as water quality or health. The project will build on and research a professional development program first developed through a state-supported literacy program for middle and high school science and math teachers to improve literacy-integrated instruction. The goals of this project include the following: (1) Create a community of practice that recognizes high school teachers as content experts; (2) Implement high quality professional development for teachers on STEM/Literacy integration; (3) Develop assessments based on STEM and literacy standards that inform instruction; and (4) Conduct rigorous research to understand the impact of the professional development. The program is aligned with state and national standards for college and career readiness. Project resources will be widely shared through a regularly updated project website (stemliteracyproject.org), conference presentations, and publications reaching researchers, developers, and educators. These resources will include scenario-based assessment tools and instructional materials.

Through the integration of STEM content and literacy, the project will study the ways teachers implement project practices integrating literacy activities into STEM learning. Teachers will facilitate instruction using scenarios that present students with everyday, STEM-related issues, presented as scenarios, that they read and write about. After reading and engaging with math and science content, students will write a source-based argument in which they state a claim, support the claim with evidence from the texts, and explain the multiple perspectives on the issue. These scenarios provide students with agency as they craft an argument for an audience, such as presenting to a city council, a school board, or another group of stakeholders. Project research will use a mixed methods design. Based on the work completed through the initial designs and development of scenario-based assessments, rubrics, and scoring processes, the project will study the impact on instruction and student learning. Using a triangulation design convergence model, findings will be compared and contrasted in order for the data to inform one another and lead to further interpretation of the data. project will analyze the features of STEM content learning after program-related instruction. Data collected will include pre-post student scenario-based writing; pre-post interviews of up to 40 students each year; pre-post teacher interviews; and teacher-created scenario-based assessments and supporting instructional materials. Student learning reflected in the assessments paired with student and teacher interview responses will provide a deeper understanding of this approach of integrating STEM and literacy. The use of discourse analysis methods will allow growth in content learning to be measured through language use. Project research will build knowledge in the field concerning how participation in teacher professional development integrating STEM content in literacy practices impacts teacher practices and student learning.

SimSnap: Orchestrating Collaborative Learning in Biology through Reconfigurable Simulations (Collective Research: Puntambekar)

This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.

Award Number: 
2010357
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands. Working within a digital plant habitat simulation, students will investigate how different environmental and genetic factors affect the health of a variety of plants and vegetables. As students engage in design tasks, they will be able to seamlessly move between individual and collaborative work with peers by "snapping" their tablets together (by placing them next to each other) to create a single shared simulation that spans all their devices. Students will be able to drop elements of their individual inquiry activities (e.g., plant types, soil compositions) into their shared simulation, providing opportunities for collaborative discussion and knowledge integration. When students "unsnap" their tablets, their collaborative work will stay with them in a digital journal, for individual reflection or as a resource for future collaborative activities (with potentially new group members). Project curriculum units will help students see the connections between the science concepts and principles they are learning, as they iteratively work on their designs through a combination of individual, collaborative and whole class learning. This work will also develop new approaches that help teachers understand the state of the class when students are taking part open-ended biology investigations, and support the teacher classroom orchestration and facilitation. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website.

The project will research collaborative learning along three planesindividual, small group and whole classwith technologies and classroom teachers supporting learning in innovative ways. Research has shown that technology can support collaborative learning, but there is limited research on how it can support transitions between individual and collaborative learning. While research has also shown that collaborative or individual learning may be more beneficial depending on the task or learning goal, there are relatively few studies that examine the potential for learning when students move between these social planes. Further, as these configurations become increasingly complex, there is also the challenge of how to support teachers' orchestration and facilitation. Studies will focus around four main research questions: 1) How does engaging in personally relevant biology curriculum through user-driven investigations help students understand the underlying science content? 2) How are students using and sharing the work of others to develop their own understanding about the underlying science concepts? 3) How do designs that allow for the movement between individual, small group, and whole class configurations allow students to work as a learning community? 4) How does the technology platform support teachers in orchestrating and facilitating classroom activities? Project studies will follow a design-based research methodology, guided by the premise that learning in naturalistic settings is the product of multiple interacting variables that cannot be reduced to a small set of controlled factors. The research will be broken down across four main developmental arcs: Technology design and iteration; Facilitation, user testing, and co-design; Classroom implementation; and Research and analysis. Each of the designed technologies will be user tested in the lab prior to being deployed in the classroom. Part of the analysis will focus on how the different technologies (i.e., individual and connected tablets, the teacher orchestration tablet) support learning and collaboration in naturalistic settings. The project research framework provides a way to examine the usability, usefulness and impact of interactions in a multi-user collaborative context using a mixed-method approach with various quantitative measures and qualitative indicators. Teachers will be prepared to use the system through 2-week summer institutes, during which they will also participate in co-design of the curriculum and the technology. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website, as well as being disseminated to appropriate audiences via conference presentations and publications.

SimSnap: Orchestrating Collaborative Learning in Biology through Reconfigurable Simulations (Collective Research: Tissenbaum)

This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.

Award Number: 
2010456
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands. Working within a digital plant habitat simulation, students will investigate how different environmental and genetic factors affect the health of a variety of plants and vegetables. As students engage in design tasks, they will be able to seamlessly move between individual and collaborative work with peers by "snapping" their tablets together (by placing them next to each other) to create a single shared simulation that spans all their devices. Students will be able to drop elements of their individual inquiry activities (e.g., plant types, soil compositions) into their shared simulation, providing opportunities for collaborative discussion and knowledge integration. When students "unsnap" their tablets, their collaborative work will stay with them in a digital journal, for individual reflection or as a resource for future collaborative activities (with potentially new group members). Project curriculum units will help students see the connections between the science concepts and principles they are learning, as they iteratively work on their designs through a combination of individual, collaborative and whole class learning. This work will also develop new approaches that help teachers understand the state of the class when students are taking part open-ended biology investigations, and support the teacher classroom orchestration and facilitation. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website.

The project will research collaborative learning along three planesindividual, small group and whole classwith technologies and classroom teachers supporting learning in innovative ways. Research has shown that technology can support collaborative learning, but there is limited research on how it can support transitions between individual and collaborative learning. While research has also shown that collaborative or individual learning may be more beneficial depending on the task or learning goal, there are relatively few studies that examine the potential for learning when students move between these social planes. Further, as these configurations become increasingly complex, there is also the challenge of how to support teachers' orchestration and facilitation. Studies will focus around four main research questions: 1) How does engaging in personally relevant biology curriculum through user-driven investigations help students understand the underlying science content? 2) How are students using and sharing the work of others to develop their own understanding about the underlying science concepts? 3) How do designs that allow for the movement between individual, small group, and whole class configurations allow students to work as a learning community? 4) How does the technology platform support teachers in orchestrating and facilitating classroom activities? Project studies will follow a design-based research methodology, guided by the premise that learning in naturalistic settings is the product of multiple interacting variables that cannot be reduced to a small set of controlled factors. The research will be broken down across four main developmental arcs: Technology design and iteration; Facilitation, user testing, and co-design; Classroom implementation; and Research and analysis. Each of the designed technologies will be user tested in the lab prior to being deployed in the classroom. Part of the analysis will focus on how the different technologies (i.e., individual and connected tablets, the teacher orchestration tablet) support learning and collaboration in naturalistic settings. The project research framework provides a way to examine the usability, usefulness and impact of interactions in a multi-user collaborative context using a mixed-method approach with various quantitative measures and qualitative indicators. Teachers will be prepared to use the system through 2-week summer institutes, during which they will also participate in co-design of the curriculum and the technology. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website, as well as being disseminated to appropriate audiences via conference presentations and publications.

An Online Reflection and Community-based Instructional Development System for Mathematics Education

The project will create a system of online mathematics teacher professional development modules for middle and high school teachers. Teachers will engage in online, asynchronous, high-quality mathematics learning experiences that mirror research-based productive classroom practices and models of instruction that feature active learning and student collaboration, explanation, and discussion.

Lead Organization(s): 
Award Number: 
2010306
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will create a system of online mathematics teacher professional development modules for middle and high school teachers. Teachers will engage in online, asynchronous, high-quality mathematics learning experiences that mirror research-based productive classroom practices and models of instruction that feature active learning and student collaboration, explanation, and discussion. The modules will integrate mathematics content and teaching strategies for teachers. The teachers will work collaboratively using math tasks, their own students' work, and other resources to develop teaching practices to support mathematical problem solving. Developing online environments for teacher development is critical to reaching greater numbers of teachers, providing flexible options for learning, and taking advantage of online opportunities for collaborative learning. In particular, the software will allow teachers to share, comment and discuss mathematical work.

The field of mathematics education needs to understand the development and implementation of online learning modules for mathematics teacher development. This project will create an environment that integrates content and pedagogical knowledge via mathematics-focused modules. The project builds on the Online Asynchronous Collaboration in Mathematics Teacher Education model to create the modules. The project's research questions are about the how the teachers build mathematics knowledge for teaching together online. They also examine teacher reflection on students' mathematical works, teacher collaboration, and reciprocal perspective-taking. Finally, the research examines how shifts in instruction are supported as teachers are learning new practices in the modules. The implementation study will use data such as measures of teacher knowledge, questionnaires, artifacts from the online platform, interviews, and other sources. These will be analyzed using a mixed methods approach to understand teachers' learning, collaboration and use of the modules and to refine the modules themselves. The findings of the study should inform the design of online learning experiences for mathematics teachers, new models for teacher development, and understanding of secondary mathematics teacher knowledge and practice.

Enhancing the Teacher-Curriculum Relationship in Problem-based Mathematics Classrooms by Connecting Teacher and Student Digital Collaborative Environments

The project will create a digital environment for middle school mathematics teachers that is combined with a student collaborative platform for a problem-solving curriculum. The goal is to design and develop the digital collaborative platform so networks of teachers can create, use, and share teaching resources for planning, enactment, and reflection on student thinking.

Lead Organization(s): 
Award Number: 
2007842
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will create a digital environment for middle school mathematics teachers to promote collaboration. The digital environment for the teachers links to a student collaborative environment and contains the same problem-based curriculum materials. The environment helps teachers to collaborate and learn from one another. This occurs when teachers plan, teach, and reflect on student learning. The online, digital platform will help teachers work together more easily in networks that might be at different schools. The resources online will include problem-based curriculum materials, classroom artifacts from students, and resources created by teachers. The project will learn about how teachers use resources, collaborate in the digital environment, and support each other through the network. With more curriculum resources being created for online teaching and learning, the project will help understand how mathematics teaching and learning can be best supported.

The design-based research project in mathematics studies a digital, collaborative environment for teachers that is combined with a student collaborative platform for a middle school problem-solving curriculum. The goal is to design and develop the digital collaborative platform so networks of teachers can create, use, and share teaching resources for planning, enactment, and reflection on student thinking. The project will include middle school teachers in the design process. The environment for students enables student thinking to be visible to other students and the teacher. This allows the teacher to archive and then examine student reasoning and thinking. The new environment will allow that work to be shared with other teachers in a professional learning community. The research question is: How do teachers in networks access, generate, use, and share teaching resources (including classroom artifacts) as needed to support mathematics teaching (planning, enactment, and reflection of student thinking)? The project will use teacher interviews and artifacts from the collaborative environment for mixed methods data collection and analysis. Teacher reflection resources will be used to understand how they are thinking about students' mathematical work and how they are using the platform resources.

Supporting Science Learning and Teaching in Middle School Classrooms through Automated Analysis of Students' Writing (Collaborative Research: Puntambekar)

This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. Working in groups to design a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion and record their ideas and explanations in a digital journal.

Award Number: 
2010483
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. The use of evidence to build scientific explanations is a central practice by which scientific knowledge is generated and learned. Students often do not understand what a scientific explanation is and frequently write incomplete, non-causal accounts of scientific phenomenon. Teachers often have difficulties in helping students write explanations, as it is complex and time-consuming. Working in groups of three or four and experimenting with designing a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion. Each student will be provided with a digital journal. The prompts and information in the journal will structure the roller coaster activities (supported 6-8 weeks of instruction) and provide the students with a place to record their written ideas and explanations. At the close of several rounds of experimentation and analysis, students will write causal explanations for their current design. Through the use of the wise crowd automated assessment system, students will receive feedback on their writing. (The automated wise crowd model uses a content assessment of the explanations of experts as the foundation for analyzing and providing feedback to students.) Teachers will also use information from the system to facilitate full class discussions and individualized support. Project research and development activities will result in a fully developed and tested mechanism for providing feedback for students' science explanations. Through automated support of the content analysis of student writing across multiple assignments, the project innovations will allow teachers to more fully integrate writing into their assignments. Ultimately, the project can help students understand how scientific explanations are developed and justified and make them more critical consumers of scientific knowledge so they can make better informed decisions about scientific issues in everyday life.

The project will use a design-based research approach in developing the automated system using wise-crowd analysis and in assessing the impacts of the system on student learning and teacher classroom practices. Four research questions will guide the research: (1) How does feedback from the wise crowd system affect students' written explanation of scientific phenomenon?; (2) How do students with different levels of prior knowledge and reading comprehension benefit from automated feedback and teacher scaffolding?; (3) How do teachers use automated assessment and aggregated summaries of students' explanations during instruction?; and (4) In what ways does scaffolding from the wise crowd system and feedback from teachers support students' written explanations of learning? Through the four-year project, an iterative development process will include the design of the system and testing of two iterations of the system; research of student responses across the progression of roller coaster design and written assignments; and use of some validated and custom instruments to assess student understanding of key forces and assessment of student abilities to use data to evaluate claims. Classroom studies will use video data and researcher field notes to help understand how teachers facilitated the use of the wise-crowd system. Research will culminate in testing of the final version of the wise crowd system. Using a quasi-experimental design, classes will be randomly assigned to the treatment or comparison conditions. Findings will advance knowledge in the field about the best ways to integrate content assessment and feedback from the automated system with classroom and individual support from teachers to optimize learning for students. Materials and results generated from the project will be broadly disseminated, resulting in significant impacts for researchers and practitioners.

Supporting Science Learning and Teaching in Middle School Classrooms through Automated Analysis of Students' Writing (Collaborative Research: Passonneau)

This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. Working in groups to design a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion and record their ideas and explanations in a digital journal.

Award Number: 
2010351
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project will develop a novel, automated technology to provide middle-school students and their teachers with real-time feedback about students' written explanations of physics phenomena. The use of evidence to build scientific explanations is a central practice by which scientific knowledge is generated and learned. Students often do not understand what a scientific explanation is and frequently write incomplete, non-causal accounts of scientific phenomenon. Teachers often have difficulties in helping students write explanations, as it is complex and time-consuming. Working in groups of three or four and experimenting with designing a roller coaster, students will learn about key principles in physics such as the conservation of energy and the laws concerning forces and motion. Each student will be provided with a digital journal. The prompts and information in the journal will structure the roller coaster activities (supported 6-8 weeks of instruction) and provide the students with a place to record their written ideas and explanations. At the close of several rounds of experimentation and analysis, students will write causal explanations for their current design. Through the use of the wise crowd automated assessment system, students will receive feedback on their writing. (The automated wise crowd model uses a content assessment of the explanations of experts as the foundation for analyzing and providing feedback to students.) Teachers will also use information from the system to facilitate full class discussions and individualized support. Project research and development activities will result in a fully developed and tested mechanism for providing feedback for students' science explanations. Through automated support of the content analysis of student writing across multiple assignments, the project innovations will allow teachers to more fully integrate writing into their assignments. Ultimately, the project can help students understand how scientific explanations are developed and justified and make them more critical consumers of scientific knowledge so they can make better informed decisions about scientific issues in everyday life.

The project will use a design-based research approach in developing the automated system using wise-crowd analysis and in assessing the impacts of the system on student learning and teacher classroom practices. Four research questions will guide the research: (1) How does feedback from the wise crowd system affect students' written explanation of scientific phenomenon?; (2) How do students with different levels of prior knowledge and reading comprehension benefit from automated feedback and teacher scaffolding?; (3) How do teachers use automated assessment and aggregated summaries of students' explanations during instruction?; and (4) In what ways does scaffolding from the wise crowd system and feedback from teachers support students' written explanations of learning? Through the four-year project, an iterative development process will include the design of the system and testing of two iterations of the system; research of student responses across the progression of roller coaster design and written assignments; and use of some validated and custom instruments to assess student understanding of key forces and assessment of student abilities to use data to evaluate claims. Classroom studies will use video data and researcher field notes to help understand how teachers facilitated the use of the wise-crowd system. Research will culminate in testing of the final version of the wise crowd system. Using a quasi-experimental design, classes will be randomly assigned to the treatment or comparison conditions. Findings will advance knowledge in the field about the best ways to integrate content assessment and feedback from the automated system with classroom and individual support from teachers to optimize learning for students. Materials and results generated from the project will be broadly disseminated, resulting in significant impacts for researchers and practitioners.

Pages

Subscribe to Teachers