Teachers

Supporting Teachers to Develop Equitable Mathematics Instruction Through Rubric-Based Coaching (Collaborative Research: Hill)

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics.

Lead Organization(s): 
Award Number: 
2100961
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Creating supportive middle school mathematics learning spaces that foster students' self-efficacy and mathematics learning is a critical need in the United States. This need is particularly urgent for mathematics classrooms with students who have been historically marginalized in such spaces. While many instructional improvement efforts have focused on broadening access to mathematical ideas, fewer efforts have paid explicit attention to the ways instructional practices may serve to marginalize students. Supporting teachers in identifying and refining their equitable mathematics instructional practices is a persistent challenge. This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project's work integrates the EAR-MI rubrics into the MQI Coaching model with 24 middle grades mathematics coaches supporting 72 teachers at grades 5-8. The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

The project makes use of a delayed-treatment experimental design to investigate effects on teacher beliefs and practices and student achievement and sense of belonging. A cohort of 14 coaches are randomly selected to participate in the coaching in Years 2 and 3, with the remaining 10 coaches assigned to a business-as-usual model in Year 2 and engaging in the training in Year 3. Coaches engage in a 4-day summer training to become acquainted with the model with coaching cycles and follow-up meetings during the school year. Each coach will engage teachers in 8-10 coaching cycles in treatment years. Data on the nature of the coaching includes logs and surveys from the coaches. Teachers submit surveys related to their beliefs and practices and two lessons each at the start and end of the academic year for analysis. Student assessment data, course grades, and administrative data, combined with survey data from students on classroom belonging and perceptions of ability and confidence in mathematics, are used to describe student outcomes. Teacher outcomes are captured through the analysis of classroom video, surveys about ethnic-racial identity and racial attitudes, beliefs about students and instruction, and beliefs about and efficacy for culturally responsive teaching. The project uses a set of survey measures with established reliability and validity, adapting some instruments to include specific indicators related to the equity and access rubrics. Analysis of the data uses a multi-level model accounting for the clustering of teachers within schools and students within classrooms and schools.

Supporting Teachers to Develop Equitable Mathematics Instruction Through Rubric-based Coaching (Collaborative Research: Litke)

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics.

Lead Organization(s): 
Award Number: 
2100793
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Creating supportive middle school mathematics learning spaces that foster students' self-efficacy and mathematics learning is a critical need in the United States. This need is particularly urgent for mathematics classrooms with students who have been historically marginalized in such spaces. While many instructional improvement efforts have focused on broadening access to mathematical ideas, fewer efforts have paid explicit attention to the ways instructional practices may serve to marginalize students. Supporting teachers in identifying and refining their equitable mathematics instructional practices is a persistent challenge. This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project's work integrates the EAR-MI rubrics into the MQI Coaching model with 24 middle grades mathematics coaches supporting 72 teachers at grades 5-8. The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

The project makes use of a delayed-treatment experimental design to investigate effects on teacher beliefs and practices and student achievement and sense of belonging. A cohort of 14 coaches are randomly selected to participate in the coaching in Years 2 and 3, with the remaining 10 coaches assigned to a business-as-usual model in Year 2 and engaging in the training in Year 3. Coaches engage in a 4-day summer training to become acquainted with the model with coaching cycles and follow-up meetings during the school year. Each coach will engage teachers in 8-10 coaching cycles in treatment years. Data on the nature of the coaching includes logs and surveys from the coaches. Teachers submit surveys related to their beliefs and practices and two lessons each at the start and end of the academic year for analysis. Student assessment data, course grades, and administrative data, combined with survey data from students on classroom belonging and perceptions of ability and confidence in mathematics, are used to describe student outcomes. Teacher outcomes are captured through the analysis of classroom video, surveys about ethnic-racial identity and racial attitudes, beliefs about students and instruction, and beliefs about and efficacy for culturally responsive teaching. The project uses a set of survey measures with established reliability and validity, adapting some instruments to include specific indicators related to the equity and access rubrics. Analysis of the data uses a multi-level model accounting for the clustering of teachers within schools and students within classrooms and schools.

Supporting Teachers to Develop Equitable Mathematics Instruction Through Rubric-based Coaching (Collaborative Research: Wilson)

This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics.

Award Number: 
2100830
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

Creating supportive middle school mathematics learning spaces that foster students' self-efficacy and mathematics learning is a critical need in the United States. This need is particularly urgent for mathematics classrooms with students who have been historically marginalized in such spaces. While many instructional improvement efforts have focused on broadening access to mathematical ideas, fewer efforts have paid explicit attention to the ways instructional practices may serve to marginalize students. Supporting teachers in identifying and refining their equitable mathematics instructional practices is a persistent challenge. This project brings together a successful mathematics rubric-based coaching model (MQI Coaching) and an empirically developed observation tool focused on equity-focused instructional practices, the Equity and Access Rubrics for Mathematics Instruction (EAR-MI). The project's work integrates the EAR-MI rubrics into the MQI Coaching model with 24 middle grades mathematics coaches supporting 72 teachers at grades 5-8. The project measures the effects of the coaching model on teachers' beliefs and instructional practices and on students' mathematical achievement and sense of belonging in mathematics. The project also investigates how teachers' attitudes and beliefs impact their participation and what teachers take away from engagement with the coaching model.

The project makes use of a delayed-treatment experimental design to investigate effects on teacher beliefs and practices and student achievement and sense of belonging. A cohort of 14 coaches are randomly selected to participate in the coaching in Years 2 and 3, with the remaining 10 coaches assigned to a business-as-usual model in Year 2 and engaging in the training in Year 3. Coaches engage in a 4-day summer training to become acquainted with the model with coaching cycles and follow-up meetings during the school year. Each coach will engage teachers in 8-10 coaching cycles in treatment years. Data on the nature of the coaching includes logs and surveys from the coaches. Teachers submit surveys related to their beliefs and practices and two lessons each at the start and end of the academic year for analysis. Student assessment data, course grades, and administrative data, combined with survey data from students on classroom belonging and perceptions of ability and confidence in mathematics, are used to describe student outcomes. Teacher outcomes are captured through the analysis of classroom video, surveys about ethnic-racial identity and racial attitudes, beliefs about students and instruction, and beliefs about and efficacy for culturally responsive teaching. The project uses a set of survey measures with established reliability and validity, adapting some instruments to include specific indicators related to the equity and access rubrics. Analysis of the data uses a multi-level model accounting for the clustering of teachers within schools and students within classrooms and schools.

Supporting Teacher Understanding of Emergent Computational Thinking in Early Elementary Students

This project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers.

Lead Organization(s): 
Award Number: 
2101547
Funding Period: 
Wed, 09/01/2021 to Sat, 08/31/2024
Full Description: 

There is an increasing focus and interest in teaching computer science and computational thinking in early elementary school. The project will engage researchers, professional development providers, and early elementary teachers (K-2) in a collaborative research and development process to design a scalable professional development experience for grade K-2 teachers. The project will field test and conduct research on the artifacts, facilitation strategies, and modes of interaction that effectively prepare K-2 teachers to learn about their students’ emergent use of computational thinking strategies. The teachers will collaborate using an online platform for sharing resources, and the project will also study how the online platform can help to reach and support more teachers. The teachers’ learning will be supported by instructional coaches who will help the teachers to integrate computer science into their teaching, and to interpret evidence of their students’ understanding of computational thinking.

The project explores how to help teachers identify and support early elementary children’s emergent computational thinking. The professional learning model for teachers includes a community of practice supported by an online platform and a coach with expertise in computational thinking. The work leverages models for professional development in early grades mathematics. The project focuses on creating systems and conditions for scalable professional learning including coherence, coaching, teacher networks, and engagement with school and district leadership. The research questions are: (1) What kind of professional development and guidance do teachers need to identify and support emergent computational thinking development in young students’ language and work process? (2) What kind of professional development and guidance do teachers need to identify emergent computational thinking development in young students’ work products? (3) How can a scalable professional learning system help teachers understand the development of emergent computational thinking in K-2 students? The teachers will develop lessons, use them with students, and reflect about their work with the coach and the other teachers in their community of practice. The data collection and analysis include interviews, surveys, observations, and documentation from the online platform to understand teachers’ professional learning and development.

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

Principal Investigator: 

The A-STEP project fosters collaboration between university faculty and pathway partners to implement common set of tools (Next Gen ASET Toolkit) across a science teacher training and development pathway. Partnerships across steps function under shared goals and paradigm shifts for pedagogical reform along the teacher pathway. A-STEP promotes change across our Networked Improvement Community (NIC) and the local pathway partners working with each university, ultimately impacting the enactment of the NGSS in respective K-12 classrooms.

Click image to preview: 
Target Audience: 

Transforming Scientific Practices to Promote Students Interest and Motivation in the Life Sciences: A Teacher Leadership Development Intervention

Principal Investigator: 

How Do Teacher Leaders Transform Scientific Practices to Promote Students Interest and Motivation in STEM? Formal and informal K-12+ educators learn to employ strategies of community mapping, curricular mapping and place-based, culturally sustaining pedagogy to write, teach, and evaluate NGSS lessons that engage underrepresented students in mathematics, life, earth, and physical sciences. Two case studies highlight how educators apply these strategies to intersect three domains: experiential/place-based learning, culturally sustaining learning, and disciplinary learning .

Click image to preview: 
Target Audience: 

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Wilson)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100903
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Mawhinney)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100833
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Schwartz)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100895
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: McCulloch)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100947
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Pages

Subscribe to Teachers