Students

Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Developing a Generalized Storyline that Organizes the Supports for Evidence-based Modeling of Long-Term Impacts of Disturbances in Complex Systems

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems.

Lead Organization(s): 
Award Number: 
1813802
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences. There are a wide variety of complex systems principles at work in disturbance ecology. This project serves as a starting point on supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis). These same complex systems principles can be applied to other scientific phenomena, such as homeostasis and the spread of infectious disease. This project will bring the excitement of Luquillo Long Term Ecological Research (LTER) to classrooms outside of Puerto Rico, and has a special emphasis on low performing, low income, high minority schools in Chicago. Over 6000 students will directly benefit from participation in the research program. The units will be incorporated into the Journey to El Yunque web site for dissemination throughout Chicago Public Schools (CPS) and the LTER network. The units will be submitted for review at the Achieve network, thus extending the reach to teachers around the country. The project will impact science teachers and curriculum designers through an online course on storyline development. This project aims to improve students' ability to engage in argument from evidence and address what the literature has identified as a significant challenge, namely the ability to evaluate evidence. Researchers will also demonstrate how it is possible to make progress on implementing Next Generation Science Standards in low performing schools. Through the web-based platform, these results can be replicated across many other school districts.

Researchers will to use the scientific context of the LTER program to develop a generalized storyline template for using evidence-based modeling to teach basic principles of disturbance ecology. Though a co-design process with middle school teachers in CPS, researchers will test the application of learning principles to a generalized storyline template by developing and evaluating three units on disturbance ecology - one life science, one Earth system science, and one physical science. Through a task analysis, researchers have identified three key areas of support for students to be successful at explaining how a system will respond to a disturbance. First, students need to be able to record evidence in a manner that will guide them to developing their explanation. Causal model diagrams have been used successfully in the past to organize evidence, but little is known about how students can use their causal diagrams for developing explanations. Second, there have been a wide variety of scaffolds developed to support the evaluation of scientific arguments, but less is known about how to support students in organizing their evidence to produce scientific arguments. Third, evidence-based modeling and scientific argumentation are not tasks that can be successfully accomplished by following a recipe. Students need to develop a task model to understand the reason why they are engaged in a particular task and how that task will contribute to the primary goal of explanation.

Developing Preservice Teachers' Capacity to Teach Students with Learning Disabilities in Algebra I

Project researchers are training pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The trainings emphasize the use of gestures and strategic questioning to support students with learning disabilities and to build students’ understanding in Algebra 1.

Project Email: 
Lead Organization(s): 
Award Number: 
1813903
Funding Period: 
Wed, 08/01/2018 to Sat, 07/31/2021
Full Description: 

This project is implementing a program to train pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The project trains tutors to utilize gestures and strategic questioning to support students with LD to build connections between procedural knowledge and conceptual understanding in Algebra 1, while supporting students’ dispositions towards doing mathematics. The training will prepare tutors to address the challenges that students with LD often face—especially challenges of working memory and processing—and to build on their strengths as they engage with Algebra 1. The project will measure changes in tutors’ ability to use gestures and questioning to support the learning of students with LD during and after the completion of our training. It will also collect and analyze data on the knowledge and dispositions of students with LD in Algebra 1 for use in the ongoing refinement of the training and in documenting the impact of the training program.

 

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Wilson)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Lead Organization(s): 
Award Number: 
1813538
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Passmore)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Partner Organization(s): 
Award Number: 
1814263
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Science Communities of Practice Partnership

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

Award Number: 
1813012
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable. The working model involves reciprocal communities of practice, which are groups of teachers, leaders and administrators that focus on practical tasks and how to achieve them across these stakeholder perspectives. The project will provide evidence about the specific components of the professional development model that support sustainable improvement in science teaching, will test the ways that teacher ownership and organizational conditions mediate instructional change, and will develop four tools for facilitating the teacher learning and the accompanying capacity building. In this way, the project will produce practical knowledge and tools necessary for other school districts nationwide to create professional learning that is tailored to their contexts and therefore sustainable.

This study posits that communication among district teachers, teacher leaders, and administrators, and a sense of ownership for improved instruction among teachers can support sustainable change. As such, it tests a model that fosters communication and ownership through three reciprocal communities of practice--one about district leadership including one teacher per school, coaches and university faculty; another about lesson study including teachers, coaches and faculty; and a third about instructional innovation including teachers and administrators, facilitated by coaches. The research design seeks to inform what the communities of practice add to the effects in a quasi-experimental study involving 72 third to fifth grade teachers and 6500 students in four urban school districts. Mixed methodologies will be used to examine shifts in science teaching over three years, testing the professional development model and the mediating roles of reform ownership and organizational conditions.

Developing a Culturally Responsive Computing Instrument for Underrepresented Students

This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers.

Project Email: 
Lead Organization(s): 
Award Number: 
1822346
Funding Period: 
Thu, 02/15/2018 to Fri, 01/31/2020
Project Evaluator: 
Full Description: 

This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers. The project explores the constructs of culturally responsive computing across youths of diverse gender and racial identities (i.e., White, African American, Latino, Native American, Alaskan Native boys and girls) using a culturally responsive, participatory action research approach.

The project explores and develops the factor structure of an instrument on culturally responsive computing with diverse middle and high schoolers of intersecting identities. It uses culturally responsive methodologies to co-create an instrument for later validation that will assess youths' self-efficacy and self-perceptions in technology. The project will explore Culturally Response Computing constructs across variables by conducting observations, focus groups and interviews, and collect context data and information from teachers and students that will contribute to a series of case examples. The work involves a two-phase mixed-methods research study focused on assembling evidence to assess, design and validate a Culturally Responsive Computing Framework from theory to empirical application. A total of 50 students and teachers from four geographically diverse rural and urban areas and racial ethnic backgrounds will participate in co-creating constructs.

Alternative video text
Alternative video text: 

Highly Adaptive Science Simulations for Accessible STEM Education

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities.

Lead Organization(s): 
Award Number: 
1814220
Funding Period: 
Sun, 04/15/2018 to Wed, 03/31/2021
Full Description: 

This project will research, design, and develop adaptive accessibility features for interactive science simulations. The proposed research will lay the foundation that advances the accessibility of complex interactives for learning and contribute to solutions to address the significant disparity in science achievement between students with and without disabilities. The PhET Interactive Simulations project at the University of Colorado Boulder and collaborators at Georgia Tech, with expertise in accessible technology and design, will form the project team. The project team will conduct design-based implementation research, where adaptive accessibility features for interactive science simulations are developed through co-design with students with disabilities and their teachers. Students will include those with dyslexia, visual impairments or blindness, and students with intellectual and developmental disabilities, ranging from 5th grade through high school, and recent high school graduates. The adaptive accessibility features will be implemented within a set of PhET interactive science simulations, and allow students with disabilities to access the science simulations with alternative input devices (such as keyboards, switches, and sip-and-puff devices), alter the visual display of the simulations (changing color contrast, zoom and enlarge, and simplify), hear different auditory representations of the visual display (descriptions, sonification, and text-to-speech), and control the rate of simulated events. All features will be capable of being turned on or off and modified on-the-fly by teachers or students through a global control panel that includes curated feature sets, resulting in highly flexible, highly accessible, interactive learning resources.

PhET simulations are widely used in US classrooms, evidence-based, aligned with standards, and highly engaging and effective learning resources. With the proposed highly adaptive features and supporting resources, teachers will be able to quickly adapt the PhET simulations to meet the needs of many students with disabilities, simplifying the task of creating differentiated learning opportunities for students and supporting students with disabilities to engage in collaborative learning - a foundational component of a high-quality STEM education - alongside their non-disabled peers. To research, design, and develop the adaptive features and investigate their use by students, project team members will co-teach in classrooms with students with disabilities and conduct co-design activities with students, where students engage in design thinking to help design and refine the adaptive features to meet identified accessibility needs (their own and those of their peers). In addition, interviews with individual students with and without disabilities will also be conducted, to test early prototypes of individual features, to later refine the layering of the many different features, and to ensure the presence of adaptive features does not negatively impact traditional use of the simulations. The proposed work also includes surveys of teachers and students and analysis of teacher use, to refine global control features, develop curated feature sets, and develop supporting teacher resources. The project will address key questions at the heart of educational design for students with diverse needs, including how to make adaptive features that support student achievement of specific learning goals. The project will use design-based implementation research, with significant co-designing with students with disabilities (including visual impairments, cognitive disabilities, or dyslexia), interviews, case studies, and classroom implementation to design and evaluate the accessibility features. This will inform new models and theories of learning with technology. The project will investigate: 1) How students engage with, use, and learn from adaptive accessibility features, 2) how adaptive accessibility features can be designed to layer harmoniously together in a learning resource, and 3) how to effectively support access to rich, dynamic feature controls and curated feature sets for intuitive classroom use by students and teachers. The project will produce 8 PhET simulations with adaptive accessibility features and supporting teacher resources. The foundational research knowledge will result in effective design and implementation of adaptive accessibility features through the analysis of student engagement, usability, and learning from accessible simulations. Additionally, the project will provide technical infrastructure, exemplars, and software for use by other STEM education technology developers. The project team will work together to create a deep understanding of how to design adaptive science simulations with practical, usable, effective accessibility, so that learners with diverse needs can advance their science content knowledge and participate in science practices alongside their peers. The work has great potential to transform STEM learning for students with disabilities and to make simulations more effective for all learners. Results will provide insight into the effectiveness of accessible simulation-based activities and their corresponding teacher materials in engaging students in science practices and learning in the classroom.

The Spectrum Laboratory: Towards Authentic Inquiry for All

This project proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students.

Award Number: 
1814077
Funding Period: 
Tue, 05/01/2018 to Fri, 04/30/2021
Full Description: 

This project addresses physics, astronomy, and chemistry education at the high-school level. Spectroscopy is the single most important diagnostic tool in the sciences, and is required for inquiry at the frontiers of science across many disciplines, yet is unavailable to most classrooms. The Smithsonian Astrophysical Observatory proposes to design, implement, and investigate the impact on students of an innovative curriculum supplement called the Spectrum Laboratory. The Spectrum Lab will be an online, interactive learning environment that enables students to make use of the database of publicly available spectra from research scientists, as well as from students. The online learning resource and associated materials are purposefully being developed and tested with a demographically diverse set of schools. The project will determine how the design of a spectroscopy workspace can help students to use spectra while gaining fluency with a range of important science practices. The project's significance and importance is to greatly increase the opportunities for high school students to engage in authentic inquiry. Being able to evaluate and interpret real-world data is a hallmark of data literacy that is developed with Spectrum Lab. Project will potentially benefit the field through advances with respect to education and diversity, and benefit society by equipping high school students with the perceptual and cognitive factors that promote students' reasoning about spectra.

The Spectrum Lab's initial design applies research-based principles recommended for educational interfaces that engage students with graphical data advancing knowledge from prior research into understanding of how students make sense of spectroscopic data and its graphical representations. The project will be developed in collaboration with partner teachers in up to eight high school classrooms, representing a diverse population of learners, and then tested with a national group of 20 teachers with 600 to 800 students. A mix of quantitative and qualitative measures, including pre/post surveys and assessments, analysis of student project work, classroom video, and teacher surveys, will help address researcher's questions about students' experiences with the Spectrum Lab. The data to be gathered will be used to iteratively improve the design of the laboratory to aid students understand the source of these authentic data coming from spectroscopy to address real-world science questions of interest and importance to them. The Spectrum Lab will enable students to engage in a broad range of inquiry projects that were previously inaccessible, including projects near the frontiers of science. The students will become involved in their authentic inquiry projects, where each activity engages them in key science practices, including generating model spectrum plots to make predictions, assessing and interpreting data, and reasoning from evidence (and models) in support of a claim. The students will be using graphs of well-documented experiments and in physics, more challenging graphs of spectra of less familiar wavelength axis. The students in chemistry will learn how to relate the bright lines observed in an atom's spectrum to energy levels of the atom.  There will be studies that track students' eye movements show that students associate the peaks or valleys of a spectrum with individual atoms in a molecule, rather than with the overall properties of the molecule. The resources developed by the project will be freely available online for teachers and researchers. The Spectrum Lab is an advance in education technology that uses modern tools for enabling interactive data visualization. Its features enable students to integrate and apply the most important elements of science practice, such as the ability to draw evidence-based conclusions, as well as the ability to gather, evaluate and interpret data, intended to help students' science practice more closely resemble how research is done. The Spectrum Lab will modernize a critical part of high-school science classrooms, help teachers meet the expectations of the Next Generation Science Standards, and will better prepare students for college work.

Strengthening Data Literacy Across the Curriculum

This project will develop a set of statistics learning materials, with data visualization tools and an applied social science focus, to design applied data investigations addressing real-world socioeconomic questions with large-scale social science data. This project is designed to promote statistical understandings and interest in quantitative data analysis among high school students and engage students with content that resonates with their interests.

Award Number: 
1813956
Funding Period: 
Sun, 07/01/2018 to Wed, 06/30/2021
Full Description: 

The Strengthening Data Literacy across the Curriculum (SDLC) project seeks to significantly enhance the learning and teaching of Science, Technology, Engineering, and Mathematics (STEM) high school students and teachers through the development of resources, models, and tools. This project is designed to promote statistical understandings and interest in quantitative data analysis among high school students. The project will target students outside mathematics and statistics classes who seldom have opportunities formally make sense of large-scale quantitative data. The population for the initial study will be humanities/social studies and mathematics/statistics high school teachers and their classes. The focus on social justice themes are intended to engage students with content that resonates with their interests. This strategy has the potential to demonstrate ways to provide rich, meaningful statistical instruction to a population that seldom has the opportunity for such learning. By capturing students' imagination and interest with social justice themes, this project has the potential of high impact in today's society where understanding and preparing statistical reports are becoming more critical to the general populace.

This project will build on prior theory and research to develop a new set of statistics learning materials, with data visualization tools and an applied social science focus to design three 2-week applied data investigations (self-contained modules) addressing real-world socioeconomic questions with large-scale social science data. The modules will be aligned with the high school Common Core State Standards for Mathematics and key statistical content for college students. The purpose of the study is to strengthen existing theories of how to design classroom learning materials to support two primary sets of outcomes for high school students, particularly among those historically underrepresented in STEM fields: 1) stronger understandings of important statistics concepts and data analysis practices, and 2) interest in statistics and working with data.  The modules will engage students in a four-step investigative process where they will (1) formulate questions that can be answered with data; (2) design and implement a plan to assemble appropriate data; (3) use numerical and graphical methods to explore the data; and (4) summarize conclusions relating back to the original questions and citing relevant components of the analysis that support their interpretation and acknowledging other interpretations.

The project will employ a Design-Based Implementation Research (DBIR) design using both quantitative and qualitative data to determine results of targeted outcomes (noted above) as well track whether there is any evidence to support the conjectures that key module components directly impact targeted student outcomes. Starting with a well-defined, preliminary conceptual framework for the study, the project team will conduct four cycles of iterative design and testing of the proposed SDLC modules over two academic years, with each cycle occurring during a fall or spring semester.

Pages

Subscribe to Students