Families

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Quintos)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Award Number: 
2010417
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Pinnow)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Lead Organization(s): 
Award Number: 
2010260
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

Parents, Teachers, and Multilingual Children Collaborating on Mathematics Together (Collaborative Research: Civil)

The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

Lead Organization(s): 
Award Number: 
2010230
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

The connections between students' home and family contexts and the activities of formal schooling are critical to support meaningful learning and family engagement in formal schooling. The need to better understand and make use of those connections is particularly important for multilingual learners whose family and cultural contexts may differ significantly from school contexts and their teachers' own experiences. The goal of this project is to develop and study a mathematics partnership that engages multilingual children, their teachers, and their parents in mathematical experiences together. These mathematical experiences are designed to advance equity in mathematics education for multilingual students. The project will design professional learning opportunities for parents, teachers, and students, and study the ways in which the professional learning opportunities influence teacher beliefs, quality of instruction, parent beliefs, and teacher and parent understanding of positioning.

This project uses a design-based implementation research (DBIR) approach, along with principles of Social Design Experiments to engage in iterative cycles of inquiry to develop, implement, and refine the model. Parents, teachers, and students in three states (Arizona, Maryland, and Missouri) will be recruited that represent diverse populations both with respect to demographics and with respect to the policy contexts surrounding multilingual learners. Two cohorts of parents will be invited to participate in the parent-teacher study group, one consisting of 6 parents and teachers per site and one consisting of 20 parents and their children's teachers per site. In each iteration, data will be collected at multiple time points related to teachers' beliefs about effective math instruction for multilingual students; quality of mathematics instruction for linguistically diverse students; focus group interviews with parents and students, and video records of teachers and parents working with their students doing mathematics during study group convenings. Data analysis will blend quantitative and qualitative methods. Quantitative methods will include t-tests, multivariate, and correlational analyses to examine changes in teacher beliefs, instructional quality, and the relationships between the two. Qualitative analyses using thematic coding and discourse analysis will be used to analyze study group meetings and outcomes related to parent and teacher positioning of multilingual learners.

CAREER: Understanding Latinx Students' Stories of Doing and Learning Mathematics

This project characterizes and analyses the developing mathematical identities of Latinx students transitioning from elementary to middle grades mathematics. The central hypothesis of this project is that elementary Latino students' stories can identify how race and language are influential to their mathematical identities and how school and classroom practices may perpetuate inequities.

Lead Organization(s): 
Award Number: 
1941952
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Although the Latino population throughout the United States continues to increase, various researchers have shown that Latino students are often not afforded high quality learning experiences in their mathematics classrooms. As a result, Latino students are underrepresented in higher level mathematics courses and careers involving mathematics. Having a better understanding of Latino students' perspectives and experiences is imperative to improving their opportunities to learn mathematics. Yet, little research has made central Latinos students' perspectives of learning and doing mathematics, especially over a critical period of time like the transition from elementary to middle school. The goal of this study will be to improve mathematics teaching and learning for Latino youth as they move from upper elementary to early middle school mathematics classrooms. The project involves three major parts: investigating the policy, media, and oral histories of Latino families/communities to understand the context for participating Latino students' mathematics education; exploring Latino students' stories about their experiences learning and doing mathematics to understand these students' perspectives; and creating documentary video portraitures (or composite cases) of participants' stories about learning and doing mathematics that can be used in teacher preparation and professional development. Finally, the project will look across the experiences over the duration of the project to develop a framework that can be used to improve Latino students' mathematics education experiences. This project will provide a window into how Latino students may experience inequities and can broaden mathematics educators' views on opportunities to engage Latino students in rigorous mathematics. The project will also broaden the field's understanding of how Latino students racial/ethnic and linguistic identities influence their experiences learning mathematics. It will also identify key factors that impact Latino students' experiences in learning mathematics to pinpoint specific areas where interventions and programs need to be designed and implemented. An underlying assumption of the project is that carefully capturing and understanding Latino students' stories can illuminate the strengths and resilience these students bring to their learning and doing of mathematics.

This research project characterizes and analyses the developing mathematical identities of Latinx students transitioning from elementary to middle grades mathematics. The overarching research question for this study is: What are the developing stories of learning and doing mathematics of Latino students as they transition from elementary to middle school mathematics? To answer this question, this study is divided into three phases: 1) understanding and documenting the historical context by examining policy documents, local newspaper articles, and doing focus group interviews with community members; 2) using ethnographic methods over two years to explore students' stories of learning and doing mathematics and clinical interviews to understand how they think about and construct arguments about mathematics (i.e., measurement, division, and algebraic patterning); and 3) creating video-cases that can be used in teacher education. Traditional ways of teaching mathematics perpetuate images of who can and cannot do mathematics by not acknowledging contributions of other cultures to the mathematical sciences (Gutiérrez, 2017) and the way mathematics has become a gatekeeper for social mobility (Martin, Gholson, & Leonard, 2010; Stinson, 2004). Focusing on Latino students' stories can illuminate teachers' construction of equitable learning spaces and how they define success for their Latino students. The central hypothesis of this project is that elementary Latino students' stories can identify how race and language are influential to their mathematical identities and how school and classroom practices may perpetuate inequities. Finally, the data and video-cases will then be used to develop a conceptual framework for understanding the development of the participating students' developing mathematical identities. This framework will provide an in-depth understanding of the developing racial/ethnic, linguistic, and mathematical identities of the participating Latino students. The educational material developed (e.g. video documentaries, discussion material) from this project will be made available to all interested parties freely through the project website. The distribution of these materials, along with further understanding of Latino students' experiences learning mathematics, will help in developing programs and interventions at the elementary and middle grade level to increase the representation of Latino students in STEM careers. Additionally, identifying the key factors impacting Latino students' experiences in learning mathematics can pinpoint specific areas where interventions and programs still need to be designed and implemented. Future projects could include the assessment of these programs. This project will also inform the development of professional learning experiences for prospective and practicing teachers working with Latino or other marginalized students.

The Developmental Emergence and Consequences of Spatial and Math Gender Stereotypes

This project will investigate the development and emergence of spatial gender stereotypes (and their relation to math gender stereotypes) in elementary school-aged children and their impact on parent-child interactions in the pre-school period.

Lead Organization(s): 
Award Number: 
1920732
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

There is currently a gender gap in STEM fields, such that females participate at lower rates and have lower career attainment than their male counterparts. While much research has focused on gender differences in math attitudes, little work has explored how attitudes in a closely related STEM domain, spatial reasoning, may also contribute to the observed gender gap. The proposed research will characterize the acquisition of gender stereotypes in childhood in two key domains critical to success and participation in STEM fields: math and spatial skills. Recent evidence suggests that children acquire math gender stereotypes (i.e., the belief that "math is for boys") as early as 1st - 2nd grades, but less is known about children's attitudes about spatial abilities. This project will be one of the first to investigate the development and emergence of spatial gender stereotypes (and their relation to math gender stereotypes) in elementary school-aged children, and their impact on parent-child interactions in the pre-school period.

Eight behavioral studies involving 1290 children (Pre-K - 4th graders), 240 caregivers, and 180 adults will participate in studies that evaluate an integrated theoretical model of the relations between gender, gender stereotypes, attitudes, and abilities in the domains of math and space. In Series 1, studies will characterize the emergence of and assumptions behind spatial- and math- gender stereotypes in 1st - 4th graders, while determining how they may be acquired. In Series 2, studies will explore the real-world impacts of spatial-gender stereotypes on STEM participation and achievement in childhood. Lastly, Series 3 studies will explore the malleability of these stereotypes in the hopes of identifying ways to ameliorate their impact early in development. The project will provide training for doctoral graduate and undergraduate students. Moreover, this project will support new and ongoing collaborations with local children's museums, which facilitate interactions and communication with families, educators, and the public about the research findings. By being some of the first work to uncover the developmental origins and consequences of math and spatial stereotypes, this work may inform possible future interventions to reduce and/or eliminate the perpetuation of these stereotypes in children, long before they can have greater lifelong impacts.

Early Emergence of Socioeconomic Disparities in Mathematical Understanding

This study will provide foundational knowledge about the activities and interactions in the home environment that drive the early emergence of math skills disparities related to SES.

Project Email: 
Lead Organization(s): 
Award Number: 
1920545
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

The math skills of children from high income families have grown faster than those of children from middle- or low-income families resulting in a significant and persistent gap. These disparities emerge in preschool and are larger by the start of kindergarten. As children progress through school, the gap in math skills persists or even widens. Importantly, SES-related disparities in math skills have implications for long-term academic achievement and educational attainment, as well as access to STEM education and professions in adulthood. As such, there is an urgent need to identify the factors shaping early math development before children start formal schooling. This investigation will provide foundational knowledge about the activities and interactions in the home environment that drive the early emergence of math skills disparities related to SES. In the long term, findings from this work could inform home visitation programs and early care and education curricula aimed at strengthening the early math skills of children living in low resourced communities. The knowledge generated by this study has the potential to enhance equity in access to STEM education and professions for all children.

Using a longitudinal sequential study of two cohorts of socioeconomically diverse 30-month-olds (N = 320) and their parents, the proposed study will strengthen knowledge of the etiology of SES disparities in math skills by addressing three aims. First, it will examine associations between the home learning environment (HLE) and early math skills. Second, it will describe SES disparities in HLE and their implications for math learning. Third, it will test family stress and family culture as pathways through which SES shapes HLE and early math skills. Children will complete assessments of early math skills and other general cognitive abilities at age 30 months and again around 42-47 months. In addition to the child assessments at 30 months, in-home structured observations with a parent, parent surveys, and time diaries will measure the quantity and quality of children's opportunities for math learning at home. To measure family stress, parents will complete questionnaires assessing general stress as well as stress specifically related to performing and teaching math. To measure family culture, parents will complete questionnaires assessing their general and math-specific parenting beliefs and observations of family interactions will be conducted. This study will test whether domain-general and math-specific family stress and culture mediate the relation between HLE and SES. In sum, this study will make contributions to understanding the early emergence of economic disparities in early math skills. Theoretically, it will delineate whether domain-general or math-specific differences in HLE explain disparities in early math skills related to socioeconomic status. It will advance research by concurrently considering the roles of stress and culture in shaping disparities in children's opportunity to learn math in their early home environments. This project is funded by the EHR Core Research program, which emphasizes STEM education research that will generate foundational knowledge in the field.

Alternative video text
Alternative video text: 

Human Variance and Assessment for Learning Implications for Diverse Learners of STEM: A National Conference

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests.

Lead Organization(s): 
Award Number: 
1939192
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The conference purpose is to stimulate a national conversation concerning the relationships between assessment, teaching and learning that include scholarly research and development of tests; members of city and state boards of education; officials from states and major school systems; policymakers; and representatives of teachers' associations and parents' associations. This conference aims to attract these important professionals has important co-sponsors like the Urban Institute. This national conference flows from the work of the Gordon Commission on the Future of Assessment for Education that addressed the advancement of achievement in STEM disciplines (PreK-12) for students who are underrepresented among high achieving students. This issue of advancement of underrepresented high achieving students has received little concentrated effort and a conference would help in providing greater understanding of this special concern, which includes a student in poverty in complexed family structures.

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests. The conference will stimulate national conversation and ultimately a market that demands educational assessments that inform and improve teaching and learning transactions. The conference will be organized around four conceptual and theoretical papers that focus on the knowledge base upon which six concurrent workshops will be based. The four papers are: (1) Human Diversity and Assessment; (2) The Limits of Test Bias and Its Corrections; (3) Towards an Assessment Science Capable of Informing and Improving Learning; and  (4) Assessment in the Service of Learning. The workshops will focus on models of pedagogical practice that show promise for informing and improving teaching and learning processes and their outcomes. These issues will be discussed by 11-15 expert presenters who understand student learning and the types of information gleaned from different types of assessments. The attention to URMs and their needs and contexts are prioritized in discussions surrounding measurement science and the integration of assessment. Several important issues that address understanding of student learning, and the relationship between the varieties of information concerning students that can be accessed through assessments are: (1) The importance of the broader and more productive use of educational testing to improve the learning of STEM subject matter and values; (2) Curriculum embedded assessment and the reduction in disparities in achievement by STEM learners from diverse social divisions; (3) Innovative procedures and programs for the use of data concerning learners and teaching and learning transactions in the teaching and learning of STEM with learners who are underrepresented among high achieving STEM learners.

Young Mathematicians: Expanding an Innovative and Promising Model Across Learning Environments to Promote Preschoolers' Mathematics Knowledge

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.

Award Number: 
1907904
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

Far too many children in the U.S. start kindergarten lacking the foundational early numeracy skills needed for academic success. This project contributes to the goal of enhancing the learning and teaching of early mathematics in order to build a STEM-capable workforce and STEM-literate citizenry, which are both crucial to our nation's prosperity and competitiveness. Preparation for the STEM-workforce must start early, as young children's mathematics development undergirds cognitive development, building brain architecture, and supporting problem-solving, puzzling, and persevering, while strongly impacting and predicting future success in school. Preschool children from low socio-economic backgrounds are particularly at risk, as their mathematics knowledge may be up to a full year behind their middle-income peers. Despite agreements about the importance of mathematics-rich interactions for young children's learning and development, most early education teachers and families are not trained in evidence-based methods that can facilitate these experiences, making preschool learning environments (such as school and home) a critical target for intervention. The benefit of this project is that it will develop a robust model for a school-based intervention in early mathematics instruction. The model has the potential to broaden participation by providing instructional materials that support adult-child interaction and engagement in mathematics, explicitly promoting school-home connections in mathematics, and addressing educators' and families' attitudes toward mathematics while promoting children's mathematical knowledge and narrowing opportunity gaps.

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention. To achieve this goal, qualitative and quantitative research methodologies will be employed, integrating data from multiple sources and stakeholders. Specifically, the project will: (1) engage in a materials design and development process that includes an iterative cycle of design, development, and implementation, collaborating with practitioners and families in real-world settings; (2) collect and analyze data from at least 40 Head Start classrooms, implementing the mathematics materials to ensure that the classroom and family mathematics materials and resources are engaging, usable, and comprehensible to preschoolers, teachers, and families; and (3) conduct an experimental study that will measure the impact of the intervention on preschool children's mathematics learning. The researchers will analyze collected data using hierarchical linear regression modeling to account for the clustering of children within classrooms. The researchers will also use a series of regression models and multi-level models to determine whether the intervention promotes student outcomes and whether it supports teachers' and families' positive attitudes toward mathematics.

LabVenture - Revealing Systemic Impacts of a 12-Year Statewide Science Field Trip Program

This project will examine the impact of a 12-year statewide science field trip program called LabVenture, a hands-on program in discovery and inquiry that brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) to become fully immersed in explorations into the complexities of local marine science ecosystems.

Award Number: 
1811452
Funding Period: 
Sat, 09/01/2018 to Thu, 08/31/2023
Full Description: 

This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

Science, Technology, Engineering and Mathematics Teaching in Rural Areas Using Cultural Knowledge Systems

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

Award Number: 
1812888
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. Research activities take place in Northwest Alaska. Senior personnel will travel to rural communities to collaborate with and support participants. The visits demonstrate University of Alaska Fairbanks's commitment to support pathways toward STEM careers, community engagement in research, science teacher recruitment and preparation, and STEM career awareness for Indigenous and rural pre-college students. Pre-service teachers who access to the resources and findings from this project will be better prepared to teach STEM to Native students and other minorities and may be more willing to continue careers as science educators teaching in settings with Indigenous students. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students. The project's participants and the pre-college students they teach will be part of the pipeline into science careers for underrepresented Native students in Arctic communities. The project will build on partnerships outside of Alaska serving other Indigenous populations and will expand outreach associated with NSF's polar science investments.

CCPM will build on cultural knowledge systems and NSF polar research investments to address science themes relevant to Inupiat people, who have inhabited the region for thousands of years. An Inupiaq scholar will conduct project research and guide collaboration between Indigenous participants and science researchers using the Inupiaq research methodology known as Katimarugut (meaning "we are meeting"). The project research and development will engage 450 students in grades 6-8 and serves 450 students (92% Indigenous) and 11 teachers in the remote Arctic. There are two broad research hypotheses. The first is that the project will build knowledge concerning STEM research practices by accessing STEM understandings and methodologies embedded in Indigenous knowledge systems; engaging Indigenous communities in project development of curricular resources; and bringing Arctic science research aligned with Indigenous priorities into underserved classrooms. The second is that classroom implementation of resources developed using the CCPM will improve student attitudes toward and engagement with STEM and increase their understandings of place-based science concepts. Findings from development and testing will form the basis for further development, broader implementation and deeper research to inform policy and practice on STEM education for underrepresented minorities and on rural education.

Pages

Subscribe to Families