High School

Misconceptions Oriented Standards-Based Assessment Resource for Teachers of High School Physical Sciences (MOSART HSPS)

This project builds upon the widely used K-12 Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART). The project is developing 500 new test items that are intended to assess disciplinary core ideas in chemistry and physics aligned to Next Generation Science Standards. The new measures will be used to measure the knowledge acquired in a year of study by 10,000 students and 200 teachers in chemistry and physics.

Lead Organization(s): 
Award Number: 
1621210
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Researchers in the Harvard Smithsonian Center for Astrophysics at Harvard University are developing and validating assessment instruments intended to measure chemistry and physical science concepts for students and teachers in grades 9 through 12. This project builds upon the widely used K-12 Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART) developed by this research team. The project is developing 500 new test items that are intended to assess disciplinary core ideas in chemistry and physics aligned to Next Generation Science Standards. The new measures will be used to measure the knowledge acquired in a year of study by 10,000 students and 200 teachers in chemistry and physics. The new assessment items and instruments will be made available to other researchers and practitioners through the project website and the on-line MOSART assessment system.

The assessment development process is based on prior research conducted to develop similar MOSART items and instruments, which includes design efforts of assessment specialists, content experts, and research scientists. Pilot items are tested with a national sample of approximately 20,000 high school students and their teachers. Data will be analyzed using item response theory to model student responses. Outcomes consist of item parameters, test and sub-test characteristics, and predictive linkages among items. Descriptive statistics are generated to establish the state of student knowledge, pre-and post-test performance by item and by standard, and teacher knowledge. Descriptive analyses are followed by hierarchical linear modeling (HLM) to examine the relationships between teacher-level and program-level variables.

The MOSART instruments have been widely used and are based on a model of cognition with a strong research base in misconceptions in science education. These additional Grade 9-12 chemistry and physics instruments will address gaps in the current MOSART system of assessments. The new instruments focused on chemistry and physics disciplinary core ideas provide a much needed set of assessments for researchers and practitioners, particularly teacher professional development providers.

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Supporting Chemistry Teachers to Assess and Foster Chemical Thinking

The fundamental purpose of this project is to develop, implement, and study a professional development (PD) model for improving chemistry teachers' formative assessment practices to foster teaching focused on chemical thinking.

Award Number: 
1621228
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This is a design and development study submitted to the teaching strand of the Discovery Research PreK-12 (DRK-12) program; responsive to Program Solicitation NSF 15-592. The DRK-12 program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by PreK-12 students and teachers, through research and development of STEM education innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The fundamental purpose of this project is to develop, implement, and study a professional development (PD) model for improving chemistry teachers' formative assessment practices to foster teaching focused on chemical thinking. The PD model seeks to refocus and enhance teachers' abilities to notice, interpret, and respond to students' ideas. Building on previous exploratory work through which a Chemical Thinking Framework was developed, the proposed effort will work with 8th-12th grade teachers in Boston Public Schools and the New England Region to assist them (a) to recognize tools that are useful in eliciting students' chemical thinking, and adapt or design formative assessments; (b) to make sense of students' chemical thinking based on data collected using formative assessments that elicit students' thinking; and (c) to strategize responsive actions that better foster learning chemistry. The research questions will be: (1) How does chemistry teachers' assessment reasoning change through engagement in PD that focuses on formative assessment as a transformative lever?; and (2) How does engagement in the proposed PD activities influence the ideas and practices that teachers emphasize in their classrooms?

In order to address the research questions, the project will develop a yearlong PD model with four cohorts of 8th-12th grade teachers, including one cohort with teachers from the New England region in a hybrid format (face-to-face and online); each having six teachers (N=24). The model development will be conducted in three phases. In Phase 1, the research team will develop a detailed plan for the PD program by designing and testing conceptualized activities. During Phase 2, the project will study the model with Cohorts 1 and 2 teachers. Phase 3 will focus on positioning the model for scaling up purposes with Cohorts 3 and 4. This phase will test the resources developed, and make comparisons to assess the scalability of the model. Data gathering strategies will include: (a) focus groups to collect data on teachers' assessment reasoning while collectively analyzing students' written work and videos of assessment practice; (b) assessment portfolios to gather individual data on teacher assessment reasoning and practice; (c) assessment snapshots to capture individual teachers' interactions with students; and (d) follow-up sessions to observe and videotape teachers during the year. Data interpretation strategies will include: (a) analysis of domain-neutral factors to characterize changes in how teachers frame and approach assessment of student understanding; and (b) analysis of domain-dependent factors to characterize changes in teachers' attention to the disciplinary ideas of students' work according to the Chemical Thinking Framework. The project will include an external evaluator to address both formative and summative components of this process. The outcome of the proposed scope of work will be a research-informed and field-tested PD model focused on the use of formative assessment to improve chemistry teaching and learning.

Pages

Subscribe to High School