Mixed Methods

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Marchand)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Award Number: 
1812976
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Harris)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Lead Organization(s): 
Award Number: 
1907480
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

This project was previously funded under award #1813086.

Professional Development Supports for Teaching Bioinformatics through Mobile Learning

This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. The project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities.

Lead Organization(s): 
Award Number: 
1812738
Funding Period: 
Sat, 09/01/2018 to Mon, 02/28/2022
Full Description: 

Bioinformatics is an emerging area of research that develops new knowledge through computational analysis of vast biological and biomedical data. This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. Building from a robust literature in professional development design research, project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities. The overarching goal of the project is to help create an engage population of informatics-informed students who are capable of critically analyzing information and able to solve local problems related to their health and well-being.

The project team will use a design-based implementation research approach to identify the curricular and instructional supports needed to achieve the teaching and learning goals through iterative project revisions, employing mixed methods to evaluate teacher and student learning processes and outcomes. Teachers from local high needs schools will participate in a three-week summer workshop, where they will learn about state-of-the-art bioinformatics content, project-based pedagogies that promote computational literacy, and strategies integrate mobile technologies into instruction.  They will implement the instructional units during the year, and the summer workshop will be revised and delivered to an expanded cohort of teachers the following summer. The data collection and analysis conducted on teachers' enactment of these modules will reveal the professional development and implementation areas needed to support particular populations, specifically underrepresented groups in STEM, to engage with bioinformatics learning and take authentic action on local community issues.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Project Videos

2020 STEM for All Video Showcase

Title: STRIDES: Customizing Online Curricula for Distance Learning

Presenter(s): Libby Gerard, Sarah Bichler, Phillip Boda, Allison Bradford, Emily Harrison, Jennifer King Chen, Jonathan Lim-Breitbart, Marcia Linn, & Korah Wiley

Building Middle School Students' Understanding of Heredity and Evolution

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

Lead Organization(s): 
Award Number: 
1814194
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules. The planned research will also examine whether student understanding of evolution depends on the length and time of exposure to learning about heredity prior to learning about evolution.

This Early Stage Design and Development project will develop two new 3-week middle school curriculum units, with one focusing on heredity and the other focusing on evolution. The units will include embedded formative and summative assessment measures and online teacher support materials. These units will be developed as part of a curriculum learning progression that will eventually span the elementary grades through high school. This curriculum learning progression will integrate heredity, evolution, data analysis, construction of scientific explanations, evidence-based argumentation, pattern recognition, and inferring cause and effect relationships. To inform development and iterative revisions of the units, the project will conduct nation-wide beta and pilot tests, selecting schools with broad ranges of student demographics and geographical locations. The project will include three rounds of testing and revision of both the student curriculum and teacher materials. The project will also investigate student understanding of evolution in terms of how their understanding is impacted by conceptual understanding of heredity. The research to be conducted by this project is organized around three broad research questions: (a) In what ways can two curriculum units be designed to incorporate the three dimensions of science learning and educative teacher supports to guide students' conceptual understanding of heredity and evolution? (b) To what extent does student understanding of evolution depend on the length and timing of heredity lessons that preceded an evolution unit? And (c) In what ways do students learn heredity and evolution?

LabVenture - Revealing Systemic Impacts of a 12-Year Statewide Science Field Trip Program

This project will examine the impact of a 12-year statewide science field trip program called LabVenture, a hands-on program in discovery and inquiry that brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) to become fully immersed in explorations into the complexities of local marine science ecosystems.

Award Number: 
1811452
Funding Period: 
Sat, 09/01/2018 to Thu, 08/31/2023
Full Description: 

This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

GeoHazard: Modeling Natural Hazards and Assessing Risks

This project will develop and test a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts.

Lead Organization(s): 
Award Number: 
1812362
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

As human populations grow and spread into areas where extreme natural events impact lives, there is increasing need for innovative Earth science curriculum materials that help students interpret data and and understand the factors and risks associated with natural hazards. Studying the processes underlying these naturally occurring events and the relationships between humans and their environments would enrich the standard Earth science curriculum by providing students with valuable insights about the potential impacts of extreme natural events. This project will respond to that need by developing and testing a new instructional approach that integrates a data analysis tool with Earth systems models in a suite of online curriculum modules for middle and high school Earth science students. Each module will be designed as a sequence of activities lasting approximately 7-10 class periods. These will be stand-alone modules so each teacher can implement just one module or several modules. The modules will facilitate development of rich conceptual understandings related to the system science of natural hazards and their impacts. Students will develop scientific arguments that include risk assessment based on their understanding of real-world data and the particular Earth system being studied. The project will develop a set of computational models designed specifically to explore geoscience systems responsible for natural hazards. An open-source data analysis tool will also be modified for students to create and analyze visualizations of the magnitude, frequency, and distribution of real-world hazards and the impact of those hazards on people. Students will compare data generated from the Earth systems models with real-world data in order to develop an understanding of the cause and progression of natural hazards, as well as to make predictions and evaluate future risks.

The four-year, early stage design and development project will be conducted in two phases. In Phase 1, design-based research will be used to iteratively design and test Earth systems models. A team of five lead teachers will field test modules and provide focus group feedback during the development phase of the curricula. These lead teachers will provide input into the design and development of the tools, the organization and structure of the curriculum, and provide suggestions about classroom implementation to support the development of teacher support materials. After the models are developed, four curriculum modules related to hurricanes, earthquakes, floods, and wildfires will be developed, tested, and revised. In Phase 2, a group of 30 teachers will participate in implementation studies that will test usability of the modules across students from diverse backgrounds and feasibility of implementation across a range of classroom settings. Research will focus on understanding how to support student analysis of real-world datasets in order to improve their conceptual understanding of complex Earth systems associated with natural hazards. The project will also examine the role of uncertainty when students make scientific arguments that include predictions about the behaviors of complex systems and the uncertainties related to risk assessment. The project aims to clarify student views of uncertainty and how teachers can better support student understanding of the inherently uncertain nature of systems, models, and natural hazards, while understanding that models can be used to reduce impact. Questions guiding project research include: (1) How do students use flexible data visualizations to make sense of data and build and refine conceptual models about natural hazards? (2) How do students incorporate data from models and the real world in formulating scientific arguments; how do students use scientific uncertainty to assess risks based on their understanding of a natural hazard system; and how do students quantify and explain risks to humans and compare different sources of risks? And (3) Do GeoHazard curriculum modules help students make gains in risk-infused scientific argumentation practice and conceptual understanding underlying natural hazards? To what extent, for whom, and under what conditions is the GeoHazard curriculum useful in developing risk-infused scientific argumentation practice and conceptual understanding?

Enhancing Teacher and Student Understanding of Engineering in K-5 Bilingual Programs

This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Lead Organization(s): 
Award Number: 
1814258
Funding Period: 
Mon, 10/01/2018 to Thu, 09/30/2021
Full Description: 

Engineering is part of everyone's local community and daily activities yet opportunities to learn about engineering are often absent from elementary school classrooms. Further, little is known about how teachers' and students' conceptions of engineering relate to aspects of their local community such as language and culture. Knowing more about this is important because students' perceptions of mismatch between their personal culture and the engineering field contributes to the continued underrepresentation of minorities in the profession. This mixed-method exploratory study will examine how bilingual teachers working in elementary schools in Massachusetts and Puerto Rico understand the role and skills of engineers in society. In turn, it will examine how teachers adapt existing engineering lessons so that those activities and concepts are more culturally and linguistically accessible to their students.

Consistent with the aims of the DRK-12 program, this project will advance understanding of how engineering education materials can be adapted to the characteristics of teachers, students, and the communities that they reside in. Further, its focus on bilingual classrooms will bring new perspectives to characterizations of the engineering field and its role in different cultures and societies. Over a three-year period, the team will investigate these issues by collecting data from 24 teachers (12 from each location). Data will be collected via surveys, interviews, discussion of instructional examples, videos of teachers' classroom instruction and analysis of artifacts such as teachers' lesson plans. Teachers will collaborate and function as a professional co-learning community called instructional rounds by participating and providing feedback synchronously in face-to-face settings and via the use of digital apps. Project findings can lead to teaching guidelines, practices, and briefs that inform efforts to successfully integrate bilingual engineering curriculum at the elementary grades. This work also has the potential to create professional development models of success for K-5 teachers in bilingual programs and enhance engineering teaching strategies and methods at these early grade levels.

Engaging High School Students in Computer Science with Co-Creative Learning Companions (Collaborative Research: Magerko)

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code.

Award Number: 
1814083
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 
This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages over 160,000 learners worldwide in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions. This work will directly address the national need to develop computing literacy as a core STEM skill.
 
The proposed work brings together an experienced interdisciplinary team to investigate the hypothesis that adding a co-creative learning companion to an expressive computer science learning environment will improve students' computer science learning (as measured by code sophistication and concept knowledge), positive attitudes towards computing (self-efficacy and motivation), and engagement (focused attention and involvement during learning). The iterative design and development of the co-creative learning companion will be based on studies of human collaboration in EarSketch classrooms, the findings in the co-creative literature and virtual agents research, and the researchers' observations of EarSketch use in classrooms. This work will address the following research questions: 1) What are the foundational pedagogical moves that a co-creative learning companion for expressive programming should perform?; 2) What educational strategies for a co-creative learning companion most effectively scaffold learning, favorable attitudes toward computing, and engagement?; and 3) In what ways does a co-creative learning companion in EarSketch increase computer science learning, engagement, and positive attitudes toward computer science when deployed within the sociocultural context of a high school classroom? The proposed research has the potential to transform our understanding of how to support student learning in and broaden participation through expressive computing environments.

Science, Technology, Engineering and Mathematics Teaching in Rural Areas Using Cultural Knowledge Systems

This project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students.

Award Number: 
1812888
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

The Cultural Connections Process Model (CCPM) will formalize, implement, and test a process model for community-engaged educational resource development for Indigenous populations. The project will collaborate with Indigenous communities to create educational resources serving Inupiaq middle school students and their teachers. Research activities take place in Northwest Alaska. Senior personnel will travel to rural communities to collaborate with and support participants. The visits demonstrate University of Alaska Fairbanks's commitment to support pathways toward STEM careers, community engagement in research, science teacher recruitment and preparation, and STEM career awareness for Indigenous and rural pre-college students. Pre-service teachers who access to the resources and findings from this project will be better prepared to teach STEM to Native students and other minorities and may be more willing to continue careers as science educators teaching in settings with Indigenous students. The project will contribute to a greater understanding of effective natural science teaching and science career recruitment of minority students. The project's participants and the pre-college students they teach will be part of the pipeline into science careers for underrepresented Native students in Arctic communities. The project will build on partnerships outside of Alaska serving other Indigenous populations and will expand outreach associated with NSF's polar science investments.

CCPM will build on cultural knowledge systems and NSF polar research investments to address science themes relevant to Inupiat people, who have inhabited the region for thousands of years. An Inupiaq scholar will conduct project research and guide collaboration between Indigenous participants and science researchers using the Inupiaq research methodology known as Katimarugut (meaning "we are meeting"). The project research and development will engage 450 students in grades 6-8 and serves 450 students (92% Indigenous) and 11 teachers in the remote Arctic. There are two broad research hypotheses. The first is that the project will build knowledge concerning STEM research practices by accessing STEM understandings and methodologies embedded in Indigenous knowledge systems; engaging Indigenous communities in project development of curricular resources; and bringing Arctic science research aligned with Indigenous priorities into underserved classrooms. The second is that classroom implementation of resources developed using the CCPM will improve student attitudes toward and engagement with STEM and increase their understandings of place-based science concepts. Findings from development and testing will form the basis for further development, broader implementation and deeper research to inform policy and practice on STEM education for underrepresented minorities and on rural education.

Pages

Subscribe to Mixed Methods