Mixed Methods

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Enyedy)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908791
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Supporting Students' Science Content Knowledge through Project-based Inquiry

This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.

Award Number: 
1907895
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Full Description: 

The Project-Based Inquiry (PBI) Global initiative will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. Both are innovative public high schools implementing the Early College High School model, preparing diverse students from populations underrepresented in STEM fields for college success. Because of the synergistic interaction of theory and practice, the project will produce substantial advances in the development of improved inquiry-based learning materials and research on the impact of these materials on students and teachers. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities. The following three research questions will be addressed: 1) How does inquiry through the PBI Global process support student science content knowledge? 2) How can students' motivation and engagement be characterized after participating in the PBI Global process? 3) To what degree do teachers' attitudes toward inquiry-based pedagogies change as a result of PBI Global professional development?

Project-Based Inquiry (PBI) Global responds to the need for research-informed and field-tested products with iterative development and implementation of a globally relevant, inquiry-based STEM curriculum. The project focuses on developing 9th grade student physical, biological, and environmental science content knowledge and science and engineering practices through the topics of global water and sanitation issues. Factors influencing student motivation and engagement, as well as teacher attitudes toward inquiry-based pedagogies will be investigated. The project will use a Design-Based Research (DBR) approach to develop and refine instructional materials and teacher professional development for the existing interdisciplinary PBI Global initiative. A mixed-methods research convergent parallel design will be used to explore the effects of the classroom implementation on student and teacher outcomes.


Project Videos

2020 STEM for All Video Showcase

Title: Project-Based Inquiry (PBI) Global 2020

Presenter(s): Hiller Spires & Erin Krupa


Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI)

The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

Award Number: 
1908481
Funding Period: 
Mon, 07/15/2019 to Fri, 06/30/2023
Full Description: 

High-quality mathematics instruction remains uncommon and opportunities for students to develop the mathematical understanding are not distributed equally. This is particularly true for students of color and students for whom English is not their first language. While educational research has made progress in identifying practices that are considered high-quality, little attention has been given to specific instructional practices that support historically marginalized groups of students particularly as they participate in more rigorous mathematics. The main goal is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. In addition, the project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

This project will make use of two existing large-scale datasets focusing on mathematics teachers to develop rubrics on mathematics instructional quality. The datasets include nearly 3,000 video-recorded mathematics lessons and student achievement records from students in Grades 3 through 8. The four phases of this research and development project include training material development, an observation and rubric generalizability study, a coder reliability study, and structural analysis. Data analysis plans involve case studies, exploratory and confirmatory factor analyses, and cognitive interviews. 

Validity Evidence for Measurement in Mathematics Education (V-M2ED) (Collaborative Research: Bostic)

The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1920621
Funding Period: 
Thu, 08/01/2019 to Wed, 07/31/2024
Full Description: 

As education has shifted more towards data-driven policy and research initiatives in the last several decades, data for policy-related aspects are often expected to be more quantitative in nature.  This has led to the increase in use of more quantitative measures in STEM education, including mathematics education. Unfortunately, evidence regarding the validity and reliability of mathematics education measures is lacking. Furthermore, the evidence for validity for quantitative tools and measures is not conceptualized or defined consistently by researchers in the field. The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education. Drawing on the results of the synthesis study, the researchers will design, curate, and disseminate a repository of quantitative assessments used in mathematics education teaching and research. The researchers will also create materials and online training for a variety of scholars and practitioners to use the repository.

The team will address two main research questions: 1) How might validity evidence related to quantitative assessments used in mathematics education research be categorized and described? and 2) What validity evidence exists for quantitative instruments used in mathematics education scholarship since 2000? Researchers will use a cross-comparative methodology which involves conducting a literature search and then analyzing and categorizing features of instruments. The research team will examine cases (i.e., assessments described in manuscripts) in which quantitative instruments have been used, alongside specific features such as the construct measured, evidence related to sources of validity, and study sample. The team will then design, develop, and deploy a free online digital repository for the categorization of instruments and describe their associated validity evidence.

Validity Evidence for Measurement in Mathematics Education (V-M2ED) (Collaborative Research: Krupa)

The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education.

Partner Organization(s): 
Award Number: 
1920619
Funding Period: 
Thu, 08/01/2019 to Wed, 07/31/2024
Full Description: 

As education has shifted more towards data-driven policy and research initiatives in the last several decades, data for policy-related aspects are often expected to be more quantitative in nature.  This has led to the increase in use of more quantitative measures in STEM education, including mathematics education. Unfortunately, evidence regarding the validity and reliability of mathematics education measures is lacking. Furthermore, the evidence for validity for quantitative tools and measures is not conceptualized or defined consistently by researchers in the field. The purpose of this project is to fully explore the mathematics education literature to synthesize what validity evidence is available for quantitative assessments in mathematics education. Drawing on the results of the synthesis study, the researchers will design, curate, and disseminate a repository of quantitative assessments used in mathematics education teaching and research. The researchers will also create materials and online training for a variety of scholars and practitioners to use the repository.

The team will address two main research questions: 1) How might validity evidence related to quantitative assessments used in mathematics education research be categorized and described? and 2) What validity evidence exists for quantitative instruments used in mathematics education scholarship since 2000? Researchers will use a cross-comparative methodology which involves conducting a literature search and then analyzing and categorizing features of instruments. The research team will examine cases (i.e., assessments described in manuscripts) in which quantitative instruments have been used, alongside specific features such as the construct measured, evidence related to sources of validity, and study sample. The team will then design, develop, and deploy a free online digital repository for the categorization of instruments and describe their associated validity evidence.

Developing the Science Comprehensive Online Learning Platform for Rural School Science Teacher Development

This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1908937
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

Rural school districts in the US face unique challenges: isolation in small farm communities, significant distances between communities, minimal funding, and low teacher salaries. They also serve high numbers of diverse and low-income students, who deserve equitable access to high quality science learning opportunities. Effective online professional development (PD) is needed for teachers working in isolated rural communities where high quality face-to-face PD may be economically impractical for districts to offer. This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS). The online learning platform will be modeled after successful face-to-face PD features: (1) job-embedded - learning occurs within the context of teachers' classroom instruction, (2) collaborative - teachers share experiences in implementing new practices, and (3) content-specific - teachers develop disciplinary content and instructional practices that support students' understanding of science. Once developed and refined, the online PD platform can be used broadly across other contexts and content areas.

Over a three year period, this project will develop, evaluate, and then compare an online PD platform for supporting rural science teachers in implementing the Towards High School Biology (THSB) curriculum with a traditional face-to-face PD. In year one, the research team will iteratively develop the online platform and adapt the already developed face-to-face PD for implementing THSB to an online format. Utilizing Curator, a social learning platform developed by HT2Labs, project researchers will embed teacher learning that is situated with their own classroom contexts, is asynchronously and synchronously collaborative, and is focused on the THSB curriculum content. In years two and three, forty eight rural middle-school science educators will be recruited from southwest Kansas and randomly assigned to online PD (treatment) or face-to-face PD (comparison). Using mixed methodology, the project will examine if differences exist between the conditions in regards to teacher content knowledge, teacher self-efficacy in using new practices, teacher classroom practices, and student learning outcomes. It is hypothesized that there should be no differences between conditions in fostering successful implementation of evidence-based science practices and student outcomes, demonstrating the success of an online modality to support deep conceptual change in teachers' instructional practices. Furthermore, lessons learned in developing and investigating a science comprehensive online learning platform can inform application to other disciplinary content (e.g., physics, chemistry, Earth and space sciences) and across other grade level and school contexts.

 

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.

Lead Organization(s): 
Award Number: 
1908889
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

U.S. proficiency in mathematics continues to be low and early math performance is a powerful predictor of long-term academic success and employability. However, relatively few early childhood degree programs have any curriculum requirements focused on key mathematics topics. Thus, teacher professional development programs offer a viable and promising method for supporting and improving teachers' instructional approaches to mathematics and thus, improving student math outcomes. The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction. The LT2 program modules uniquely include the mathematical learning goal, the developmental progression, and relevant instructional activities. All three aspects are critical for high-quality and coherent mathematics instruction in the early grades.

This project will address the following research questions: 1) What are the medium-range effects of LT2 on student achievement and the achievement gap? 2) What are the short- and long-term effects of LT2 on teacher instructional approach, beliefs, and quality? and 3) How cost effective is the LT2 intervention relative to the original Building Blocks intervention? To address the research questions, this project will conduct a multisite cluster randomized experimental design, with 90 schools randomly assigned within school districts to either experimental or control groups. Outcome measures for the approximately 250 kindergarten classrooms across these districts will include the Research-based Elementary Math Assessment, observations of instructional quality, a questionnaire focused on teacher beliefs and practices, in addition to school level administrative data. Data will be analyzed using multi-level regression models to determine the effect of the Learning Trajectories intervention on student learning.

Case Studies of a Suite of Next Generation Science Instructional, Assessment, and Professional Development Materials in Diverse Middle School Settings

This project addresses a gap between vision and implementation of state science standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations.

Lead Organization(s): 
Award Number: 
1907944
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

New state science standards are ambitious and require important changes to instructional practices, accompanied by a coordinated system of curriculum, assessment, and professional development materials. This project addresses a gap between vision and implementation of such standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on the design of such materials using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations. Classes of urban students in two states will collect data on local insect species with the goal of understanding, sharing, and critiquing environmental management solutions. An integrated learning technology system, the Learning Navigator, draws on big data to organize student-gathered data, dialogue, lessons, an assessment information. The Learning Navigator will also amplify the teacher's role in guiding and fostering next generation science learning. This project advances the field through an in-depth exploration of the goals for the standards documents. The study begins to address questions about what works when, where, and for whom in the context of the Next Generation Science Standards.

The project uses a series of case studies to create, test, evaluate and refine the system of instructional, assessment and professional development materials as they are enacted in two distinct urban school settings. It is designed with 330 students and 22 teachers in culturally, racially and linguistically diverse, under-resourced schools in Pennsylvania and California. These schools are located in neighborhoods that are economically challenged and have students who demonstrate patterns of underperformance on state standardized tests. It will document the process of team co-construction of Next Generation Science-fostering instructional materials; develop assessment tasks for an instructional unit that are valid and reliable; and, track the patterns of use of the instructional and assessment materials by teachers. The study will also record if new misconceptions are revealed as students develop Next Generation Science knowledge,  comparing findings across two diverse school locations in two states. Data collection will include: (a) multiple types of data to establish validity and reliability of educational assessments, (b) the design, evaluation and use of a classroom observation protocol to gather information on both frequency and categorical degree of classroom practices that support the vision, and (c) consecutive years of ten individual classroom enactments through case studies analyzed through cross-case analyses. This should lead to stronger and better developed understandings about what constitutes strong Next Generation Science learning and the classroom conditions, instructional materials, assessments and teacher development that foster it.

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

Lead Organization(s): 
Award Number: 
1908110
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming. K-12 introductory programming experiences are often highly scaffolded, and it can be challenging for students to transition from constrained exercises to open-ended programming activities encountered later in-and out of-school. Teachers can provide critical support to help students solve problems and develop the cognitive, social, and emotional capacities required for conceptually and creatively complex programming challenges. Teachers - particularly elementary and middle school teachers, especially in rural and Title I schools - often lack the programming content knowledge, skills, and practices needed to support deeper and more meaningful programming experiences for students. Professional development opportunities can cultivate teacher expertise, especially when supported by curricular materials that bridge teachers' professional learning and students' classroom learning. This research responds to these needs, addressing key national priorities for increasing access to high-quality K-12 computer science education for all students through teacher professional development.

The project will involve the design and evaluation of (1) an online learning experience for teachers to develop conceptual and creative fluency through short, daily programming prompts (featuring the Scratch programming environment), and (2) educative curricular materials for the classroom (based on the online experience). The online experience and curricular materials will be developed in collaboration with three 4th through 6th-grade rural or Title I teachers. The project will evaluate teacher learning in the online experience using mixed-methods analyses of pre/post-survey data of teachers' perceived expertise and quantitative analyses of teachers' programs and evolving conceptual knowledge. Three additional 4th through 6th-grade teachers will pilot the curricular materials in their classrooms. The six pilot teachers will maintain field journals about their experiences and will participate in interviews, evaluating use of the resources in practice. An ethnography of one teacher's classroom will be developed to further contribute to understandings of the classroom-level resources in action, including students' experiences and learning. Student learning will be evaluated through student interviews and analyses of student projects. Project outcomes will inform how computer science conceptual knowledge and creative fluency can be developed both for teachers and their students' knowledge and fluency that will be critical for students' future success in work and life.

Pages

Subscribe to Mixed Methods