Professional Development

Understanding the Role of Simulations in K-12 Science and Mathematics Teacher Education

This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

Lead Organization(s): 
Award Number: 
1813476
Funding Period: 
Sat, 09/01/2018 to Sat, 08/31/2019
Full Description: 

The recent emergence of updated learning standards in science and mathematics, coupled with increasingly diverse school students across the nation, has highlighted the importance of updating professional learning opportunities for science and mathematics teachers. One promising approach that has emerged is the use of simulations to engage teachers in approximations of practice where the focus is on helping them learn how to engage in ambitious content teaching. In particular, recent technological advances have supported the emergence of new kinds of digital simulations and have brought increased attention to simulations as a tool to enhance teacher learning. This project will develop and implement a working conference for scholars and practitioners to articulate current use cases and theories of action regarding the use of simulations in PreK-12 science and mathematics teacher education. The conference will be structured to provide opportunities for attendees to share their current research, theoretical models, conceptual views, and use cases focused on the design and use of digital and non-digital simulations for building and assessing K-12 science and mathematics teacher competencies.

While the use of simulations in teacher education is neither new nor limited to digital simulation, emerging technological capabilities have enabled digital simulations to become practical in ways not formerly available. The current literature base, however, is dated and the field lacks clear theoretic models or articulated theories of action regarding what teachers could or should learn via simulations, and the essential components of effective learning trajectories. This working conference will be structured to provide opportunities for attending, teacher educators, researchers, professional development facilitators, policy makers, preservice and inservice teachers, and school district leaders to share their current research, theoretical models, conceptual views, and use cases regarding the role of simulations in K-12 science and mathematics teacher education. The conference will be organized around four major goals, including: (1) Define how simulations (digital and non-digital) are conceptualized, operationalized, and utilized in K-12 science and mathematics teacher education; (2) Document and determine the challenges and affordances of the varied contexts, audiences, and purposes for which simulations are used in K-12 science and mathematics teacher education and the variety of investigation methods and research questions employed to investigate the use of simulations in these settings; (3) Make explicit the theories of action and conceptual views undergirding the various simulation models being used in K-12 science and mathematics teacher education; and (4) Determine implications of the current research and development work in this space and establish an agenda for studying the use of simulations in K-12 science and mathematics teacher education. The project will produce a white paper that presents the research and development agenda developed by the working conference, describes a series of use cases describing current and emergent practice, and identifies promising directions for future research and development in this area. Conference outcomes are expected to advance understanding of the varied ways in which digital and non-digital simulations can be used to foster and assess K-12 science and mathematics teacher competencies and initiate a research and development agenda for examining the role of simulations in K-12 science and mathematics teacher education.


Project Videos

2019 STEM for All Video Showcase

Title: Understanding the Role of Simulations in Teacher Preparation

Presenter(s): Lisa Dieker, Angelica Fulchini Scruggs, Heather Howell, Michael Hynes, & Jamie Mikeska


Promoting Engineering Problem Framing Skill-Development in High School Science and Engineering Courses

This project will develop curricular activities and assessment guidance for K-12 science and engineering educators who seek to incorporate engineering design content into their biology, chemistry, and physics classes.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1812823
Funding Period: 
Wed, 08/01/2018 to Sat, 07/31/2021
Full Description: 

This collaborative project involving Ohio Northern University, Ohio State University, and Olathe Northwest High School will develop curricular activities and assessment guidance for K-12 science and engineering educators who seek to incorporate engineering design content into their biology, chemistry, and physics classes. This work is important because students' limited exposure to engineering activities can negatively impact their decisions to enroll in STEM courses and to pursue engineering careers. Further, many states are adopting or considering adopting the Next Generation Science Standards (NGSS), a set of classroom standards which integrate engineering content into traditional science disciplines. While high school teachers under these standards are expected to incorporate the cross-cutting engineering content into their courses, they generally receive little high-quality support for doing so. If successful, the project could provide a powerful model of how to support busy and resource-constrained STEM teachers, and create broader student interest in STEM careers.

Drawing from best practices on instructional design, the project's main objectives are to: (1) design, field-test, and evaluate the impact of 12 NGSS-aligned, engineering problem-framing design activities on students enrolled in grades 9-12 science courses and (2) design and conduct high-quality, sustained professional development that fosters participating high school science teachers' ability to deploy the NGSS concepts-linked activities. Data sources include student design artifacts, video of classroom instruction, and surveys assessing student and teacher attitudes toward engineering, student design self-efficacy and teacher self-efficacy for teaching engineering content. These data will be analyzed to determine what teachers learned from the professional development activities, how those activities informed their teaching and in turn, how students' engagement with the engineering activities relates to their engineering design skills and attitudes. In terms of intellectual merit, the project aims to develop a learning progression of students' engineering design problem-framing skills by characterizing any observed change in students' design work and attitudes over time.

Testing the Efficacy of the Strategic Observation and Reflection (SOAR) for Math Professional Learning Program

The purpose of this project is to develop, implement and test a professional development program, SOAR for Math, to build capacity for mentors and teachers to improve English learner's academic language development and mathematical content understanding.

Award Number: 
1814356
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 
Professional development is an important way for teachers who are currently in classrooms to learn about new best practices in mathematics teaching and learning and improve their practice. Little is known about what types of professional development (PD) and teacher mentoring programs support teachers' improved practices and ultimately lead to gains in student learning. The purpose of this project is to develop, implement and test a professional development program, SOAR for Math, to build capacity for mentors and teachers to improve English learner's academic language development and mathematical content understanding.
 
This study will test the efficacy of the Strategic Observation and Reflection (SOAR) for Math professional development program. The mixed methods study is designed to answer several research questions: (1) What is the impact of teachers' participation in SOAR for Math on student achievement outcomes for current and recent grade 3-6 English learner students in treatment schools? (2) What is the impact of SOAR for Math on treatment school teachers' knowledge and practices related to their academic language and literacy development instruction for current and recent English learner students, specifically scores on the Knowledge/Use Scale? (3) What is the impact of SOAR for Math on treatment mentors' knowledge and practices related to their academic language and math instruction? A randomized controlled trial will be conducted in 80 elementary schools in one California school district. Schools serving third- through sixth-grade general education students will be eligible to participate. The research team will randomly assign 40 schools to provide SOAR for Math training to mentor teachers and 40 schools to comprise a control group receiving business-as-usual professional development. Two mentors per school will participate in the study. Measures will include state math scores and a variety of observations and questionnaires to assess fidelity of implementation. Data will be analyzed using hierarchical linear modeling to account for the nested data structure.

Development and Validation of a Mobile, Web-based Coaching Tool to Improve PreK Classroom Practices to Enhance Learning

This project will promote pre-K teachers' use of specific teaching strategies that have been shown to enhance young children's learning and social skills. To enhance teachers' use of these practices, the project will develop a new practitioner-friendly version of the Classroom Quality Real-time Empirically-based Feedback (CQ-REF) tool for instructional coaches who work with pre-K teachers.

Lead Organization(s): 
Award Number: 
1813008
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

Children from low-income families often enter kindergarten academically behind their more economically affluent peers. Advancing pre-kindergarten (pre-K) teachers' ability to provide all students with high-quality early math learning experiences has potential to minimize this gap in school readiness. This project will promote pre-K teachers' use of specific teaching strategies, such as spending more time on math content and listening to children during instructional activities, that have been shown to enhance young children's learning and social skills. To enhance teachers' use of these practices, the project takes a novel approach--a mobile website that helps instructional coaches who work with pre-K teachers. The Classroom Quality Real-time Empirically-based Feedback tool (CQ-REF) will guide coaches' ability to observe specific teacher practices in their classrooms and then provide feedback to help teachers evaluate their practices and set goals for improvement.  Practically, the CQ-REF addresses the need for accessible, real-time feedback on high quality pre-K classroom teaching.

This project focuses on developing a new practitioner-friendly version of the CQ-REF, originally designed as a research tool for evaluating the quality of classroom teaching, for use by coaches and teachers. At the beginning of the four-year project, the team will collect examples of high-quality classroom teaching and coaching strategies. These will be used to create a library of video and other materials that teachers and coaches can use to establish a shared definition of what effective pre-K teaching looks like. In year three of the project, the team will pilot the CQ-REF with a diverse range of pre-K teachers and their coaches to determine the tool's usability and relevance. In this validation study coaches will be randomly assigned to either use the CQ-REF tool or coach in their usual manner. After one year, the CQ-REF's impact on teacher practices and student outcomes will be assessed. Outcomes of interest include teacher and student classroom behavior and children's executive function and ability in mathematics, literacy and science. Concurrently, an external evaluation team will examine how the coaching is being conducted and used, and participants' impressions of the coaching process. In the fourth and final year, the team will focus on refining the tool based on results from prior work and on disseminating the findings to research and practitioner audiences.

Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: Ellis)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Lead Organization(s): 
Award Number: 
1814033
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Design and Development of Transmedia Narrative-based Curricula to Engage Children in Scientific Thinking and Engineering Design (Collaborative Research: McGinnis-Cavanaugh)

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

Partner Organization(s): 
Award Number: 
1813572
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Project Evaluator: 
Collaborative for Educational Services (CES)
Full Description: 

Engineering is an important component of the Next Generation Science Standards (NGSS). However, resources for supporting teachers in implementing these standards are scarce. This project will address the need for resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. To fully exploit the potential of this pedagogy, this project will combine IE with transmedia storytelling. In transmedia storytelling, different elements of a narrative are spread across a variety of formats (such as books, websites, new articles, videos and other media) in a way that creates a coordinated experience for the user. Once created, the curricula will be implemented in classrooms to research its impact on (1) increasing learners' capacities to engage in both innovative and direct application of engineering concepts, and (2) improving learners' science, technology, engineering, and mathematics (STEM) identity. 

This research will be led by Smith College and Springfield Technical Community College in collaboration with Springfield (MA) Public Schools (SPS). Additional expertise in evaluating the findings will be provided by the Collaborative for Educational Services and an external advisory board of leaders in STEM education and transmedia storytelling. The project will result in the development of a transmedia learning environment that includes two NGSS-aligned, interdisciplinary engineering units and seven lessons that integrate science and engineering. The research study will be implemented in four phases in eight SPS middle schools. Approximately 900 students will participate each year. In Phase 1, the project team will collaborate with SPS teachers to create engineering units, lessons, and standards-based achievement measures. In Phase 2, teachers in the treatment group will participate in professional development (PD) workshops covering IE, transmedia learning environments, structure of the curriculum, and connections to NGSS. In Phase 3 the curricula will be implemented in treatment classrooms and both treatment and control group students will be assessed. In Phase 4, testing and assessment will continue in SPS schools and will be expanded to rural and suburban classrooms. Teachers in these classrooms will use online multimedia PD that will ensure scalability and mirrors the structure and content of in-person PD. Data analysis will provide evidence of whether this imaginative and transmedia educational approach improves students' capacities for using engineering concepts and enhances their STEM identity.


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Engineering Education for Middle School (TEEMS)

Presenter(s): Beth McGinnis-Cavanaugh, Sonia Ellis, & Crystal Ford


Developing a Generalized Storyline that Organizes the Supports for Evidence-based Modeling of Long-Term Impacts of Disturbances in Complex Systems

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems.

Lead Organization(s): 
Award Number: 
1813802
Funding Period: 
Sun, 07/15/2018 to Thu, 06/30/2022
Full Description: 

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences. There are a wide variety of complex systems principles at work in disturbance ecology. This project serves as a starting point on supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis). These same complex systems principles can be applied to other scientific phenomena, such as homeostasis and the spread of infectious disease. This project will bring the excitement of Luquillo Long Term Ecological Research (LTER) to classrooms outside of Puerto Rico, and has a special emphasis on low performing, low income, high minority schools in Chicago. Over 6000 students will directly benefit from participation in the research program. The units will be incorporated into the Journey to El Yunque web site for dissemination throughout Chicago Public Schools (CPS) and the LTER network. The units will be submitted for review at the Achieve network, thus extending the reach to teachers around the country. The project will impact science teachers and curriculum designers through an online course on storyline development. This project aims to improve students' ability to engage in argument from evidence and address what the literature has identified as a significant challenge, namely the ability to evaluate evidence. Researchers will also demonstrate how it is possible to make progress on implementing Next Generation Science Standards in low performing schools. Through the web-based platform, these results can be replicated across many other school districts.

Researchers will to use the scientific context of the LTER program to develop a generalized storyline template for using evidence-based modeling to teach basic principles of disturbance ecology. Though a co-design process with middle school teachers in CPS, researchers will test the application of learning principles to a generalized storyline template by developing and evaluating three units on disturbance ecology - one life science, one Earth system science, and one physical science. Through a task analysis, researchers have identified three key areas of support for students to be successful at explaining how a system will respond to a disturbance. First, students need to be able to record evidence in a manner that will guide them to developing their explanation. Causal model diagrams have been used successfully in the past to organize evidence, but little is known about how students can use their causal diagrams for developing explanations. Second, there have been a wide variety of scaffolds developed to support the evaluation of scientific arguments, but less is known about how to support students in organizing their evidence to produce scientific arguments. Third, evidence-based modeling and scientific argumentation are not tasks that can be successfully accomplished by following a recipe. Students need to develop a task model to understand the reason why they are engaged in a particular task and how that task will contribute to the primary goal of explanation.

Developing Preservice Teachers' Capacity to Teach Students with Learning Disabilities in Algebra I

Project researchers are training pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The trainings emphasize the use of gestures and strategic questioning to support students with learning disabilities and to build students’ understanding in Algebra 1.

Project Email: 
Lead Organization(s): 
Award Number: 
1813903
Funding Period: 
Wed, 08/01/2018 to Sat, 07/31/2021
Full Description: 

This project is implementing a program to train pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The project trains tutors to utilize gestures and strategic questioning to support students with LD to build connections between procedural knowledge and conceptual understanding in Algebra 1, while supporting students’ dispositions towards doing mathematics. The training will prepare tutors to address the challenges that students with LD often face—especially challenges of working memory and processing—and to build on their strengths as they engage with Algebra 1. The project will measure changes in tutors’ ability to use gestures and questioning to support the learning of students with LD during and after the completion of our training. It will also collect and analyze data on the knowledge and dispositions of students with LD in Algebra 1 for use in the ongoing refinement of the training and in documenting the impact of the training program.

 

Science Communities of Practice Partnership

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

Award Number: 
1813012
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable. The working model involves reciprocal communities of practice, which are groups of teachers, leaders and administrators that focus on practical tasks and how to achieve them across these stakeholder perspectives. The project will provide evidence about the specific components of the professional development model that support sustainable improvement in science teaching, will test the ways that teacher ownership and organizational conditions mediate instructional change, and will develop four tools for facilitating the teacher learning and the accompanying capacity building. In this way, the project will produce practical knowledge and tools necessary for other school districts nationwide to create professional learning that is tailored to their contexts and therefore sustainable.

This study posits that communication among district teachers, teacher leaders, and administrators, and a sense of ownership for improved instruction among teachers can support sustainable change. As such, it tests a model that fosters communication and ownership through three reciprocal communities of practice--one about district leadership including one teacher per school, coaches and university faculty; another about lesson study including teachers, coaches and faculty; and a third about instructional innovation including teachers and administrators, facilitated by coaches. The research design seeks to inform what the communities of practice add to the effects in a quasi-experimental study involving 72 third to fifth grade teachers and 6500 students in four urban school districts. Mixed methodologies will be used to examine shifts in science teaching over three years, testing the professional development model and the mediating roles of reform ownership and organizational conditions.

Determining Teachers' Baseline Practice and Alignment Prior to a Systemic Curriculum Change

In this study, researchers will collaborate with Baltimore City Public Schools to collect and document teacher classroom practices prior to the implementation of an extended professional development model that targets pedagogical skills associated with the NGSS. The broad objective of the project is to characterize the benefits and limitations of utilizing controlled practice-teaching as a key component of teacher professional development for integrating NGSS aligned practices in middle school science classrooms.

Partner Organization(s): 
Award Number: 
1822029
Funding Period: 
Sun, 04/01/2018 to Sun, 03/31/2019
Full Description: 

The goal of this research is to document current teaching practices prior to the systemic integration of the Next Generation Science Standards (NGSS) in Baltimore City Public schools. In this study, UMBC will collaborate with Baltimore City Public Schools (City Schools) to collect and document teacher classroom practices prior to the implementation of an extended professional development model that targets pedagogical skills associated with the Next Generation Science Standards. The broad objective of the project is to characterize the benefits and limitations of utilizing controlled practice-teaching as a key component of teacher professional development for integrating NGSS aligned practices in middle school science classrooms. Success will be measured by changes in teacher attitudes, enhancement of teacher pedagogical skills and student learning gains. Sixty teachers, and over 4,500 students in Baltimore City will be directly impacted through the professional development and curriculum enactment efforts proposed. As a full partner in the project, the City Schools' leadership will also learn what works, for whom, and under what conditions in schools that are representative of their diverse district. Lessons learned have the potential to inform the implementation of other new reform initiatives within City Schools and beyond. Findings from the proposed research have the potential to advance our understanding of innovative professional development strategies and their impact on classroom practices and student learning.

This project focuses on a national need of models for high quality professional development that directly tie specific strategies to classroom-based instructional changes and student learning outcomes. One particular shift in classroom practice that is fundamental for the classroom implementation of NGSS is scientific discourse and argumentation. One particular strategy that has shown promise for supporting teachers' use of strategies supporting argumentation is the use of controlled practice teaching. The proposed study explicitly attempts to determine the impact of the controlled practice-teaching using a quasi-experimental design. The research plan involves middle science teachers being assigned to one of two experimental conditions (PD including or excluding a controlled practice-teaching component) and then to investigate potential differences among the two treatments and control conditions related to changes in attitudes toward NGSS, classroom practices and impact on student learning. The researcher hypothesizes that the inclusion of control-practice teaching that is imbedded in a sustained professional development program will promote the development of teacher pedagogical skills aligned with NGSS more effectively than sustained professional development that does not include a control-practice component.

Pages

Subscribe to Professional Development