Projects

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

10/15/2024

Progress in science is motivated and directed by uncertainties. Yet even though uncertainty is a crucial fulcrum for scientific thought, school students are taught science within an overarching assumption that scientific knowledge is certain. This project explores the intellectual leverage of enabling middle school students to experience how scientific work grapples with uncertainty. The overall goal of this project is to understand how teachers can create equitable learning environments for culturally and linguistically diverse learners using Student Uncertainty for Productive Struggle as a pedagogical model in middle school science classrooms.

10/01/2024

Professional learning communities (PLCs) are one common model for teachers to collaborate and learn from one another. The goal of this study is to understand how teachers' expertise is positioned in a PLC and the larger system of the school and district to inform mathematics teaching and learning. This should help schools and districts understand the features of PLCs that are important for supporting teachers as they collaborate and learn.

10/01/2024

Providing computer science (CS) education to students prior to high school is critical for catalyzing their interest in CS and closing achievement and development gaps. However, the retention rate for underrepresented group participants in middle school CS teacher preparation programs is lower than that for their peers. The resulting lack of diversity in CS teachers contributes to students’ inequitable access to quality middle school CS education. In this project will investigate effective design and implementation strategies of CS teacher preparation programs aimed to increase the number of middle school CS teachers from underrepresented groups.

09/01/2024

Navigating complex societal issues such as water shortages, forest fires, and other phenomena-based problems requires understanding the social, technological, and scientific dimensions surrounding the issues and they ways these dimensions interact, shift, and change. Despite its importance, however, developing students’ socioscientific literacy has received limited attention in elementary science teaching and learning contexts. This project begins to address this problem of practice by focusing first on developing elementary teachers’ socioscientific literacy and their capacity to integrate socioscientific issues and local phenomena in their science teaching practice.

09/01/2024

High-quality early educational experiences, particularly in mathematics, are crucial for students’ success in K-12 schooling. To create these foundational experiences for young children, early childhood educators need opportunities to enhance their mathematics teaching through job-embedded, sustained professional learning. This partnership development project establish a collaboration among early childhood mathematics educators, school and district leaders, the state department of education, and university faculty in Delaware that aims to enhance children’s early mathematics learning by collaboratively designing support systems for strengthening their teachers’ professional learning.

09/01/2024

Research has shown that when teachers have strong content and pedagogical content knowledge that they can provide better quality mathematics instruction to their students and improve student outcomes. The goal of this project is to enhance elementary school teachers’ capacity to improve students’ mathematics learning through a scaled professional development program that uses artificial intelligence (AI) to create a personalized, active learning environment for teachers.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

This project will develop and study approaches to equip 4th and 5th grade general and special education teachers to teach computer science (CS) to a broad range of learners with disabilities through professional development. The project will aim to improve accessibility, accommodations, and highlight the role of paraeducators to increase participation and learning in CS for students with disabilities, and it will investigate the impact of the professional development on teachers’ instruction and the influence of the professional development model on student learning, ability beliefs, and attitudes about CS.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

Across the nation, many school districts are experiencing rapid expansion in the enrollment of multilingual learners, yet many high school teachers do not have corresponding opportunities to learn how to effectively support these students’ engagement in scientific and engineering practices. This exploratory project will address this issue by developing and testing a model of professional learning for high school teachers in which they learn how to embed the Instructional Conversation pedagogy within standards-aligned scientific and engineering practices. Under this model, high school science teachers will collaborate with high school English for Speakers of Other Languages (ESOL) teachers to co-develop linguistically sustaining instructional materials that provide students with intentionally scaffolded opportunities to use scientific dialogue as they collaborate to explain natural phenomena or design solutions through engineering.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

This project will develop and study approaches to equip 4th and 5th grade general and special education teachers to teach computer science (CS) to a broad range of learners with disabilities through professional development. The project will aim to improve accessibility, accommodations, and highlight the role of paraeducators to increase participation and learning in CS for students with disabilities, and it will investigate the impact of the professional development on teachers’ instruction and the influence of the professional development model on student learning, ability beliefs, and attitudes about CS.

08/15/2024

Although science is increasingly recognized as a key dimension of early learning, findings to date indicate that young children, especially those enrolled in public preschool programs serving historically excluded communities, have limited opportunities to engage in high quality science investigations. The lack of professional learning resources available to teachers makes it challenging for them to feasibly and effectively promote science in their classrooms. To address this need, this four-year design and development project brings together public preschool teachers, families from culturally and linguistically diverse communities, early learning and STEM researchers, and designers of media to co-design a Professional Learning Hub for Early Science.

08/15/2024

Despite years of research and interventions to address inequities that are largely related to race, science education continues to perpetuate these inequities in both participation and outcomes in science. This CAREER project will address the need to provide science teachers with a framework for considering race and racial dynamics in science teaching as well as exemplars in science teaching and professional development to support teachers’ teaching identities and praxis.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

Research has shown that the emotions elementary school teachers and their students experience when engaging in mathematics activities play an important role in mathematics teaching and learning. Yet, the field lacks mathematics-specific professional learning opportunities for elementary teachers that focus on the role of teachers’ and learners’ emotions in the way they experience mathematics in the classroom. This project will address these gaps by developing and testing the Orienting Positive Emotions in New Teachers for Mathematics (OPEN for Math) professional learning program.

08/15/2024

High school counselors play an integral role in supporting students’ trajectories toward science, technology, engineering, and mathematics (STEM) careers. Many professional learning experiences for counselors have not focused specifically on developing awareness of a broad array of STEM careers and the corresponding high school activities and coursework that can establish students’ trajectories toward these careers. This project addresses this gap in practice by developing year-long professional learning experiences focused on engineering-related careers, with and for high school counselors.

08/15/2024

Young children thrive when strong relationships exist between their home and school environments. Early home and school experiences support the development of mathematical skills. Often, schools and teachers struggle to establish these strong relationships; therefore, Math Partners will work with teachers and teaching assistants in classroom design teams to help teachers establish healthy, positive relationships with families that center families’ knowledge and experiences in the context of mathematics.

07/15/2024

While more accessible online learning opportunities that reflect everyday teaching challenges are becoming more available, most of these more flexible professional development experiences are being offered by colleges and universities to teachers who are not yet in the classroom. This situation provides an opportunity to explore how innovations in teacher professional development can be woven into school districts’ regular professional development work with its teachers. This partnership development project will create a shared vision and plan for making digitally-based teaching tasks available to elementary math and science teachers so they can learn at any time and from anywhere.

12/01/2023

The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.

12/01/2023

The goal of the project is to understand the current conditions, challenges, and resources that pertain to mathematics education in rural areas in the United States.