Educational Technology

SimScientists Games: Development of Simulation-Based Game Designs to Enhance Formative Assessment and Deep Science Learning in Middle School

This project will focus on understanding how educational games, designed according to research-based learning and assessment design principles, can better assess and promote students' science knowledge, application of science process skills, and motivation and engagement in learning.

Lead Organization(s): 
Award Number: 
1503481
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 (DRK-12) program seeks to significantly enhance the learning and teaching of science, technology, engineering, and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project is a four-year design and development study submitted to the assessment strand of the program. It will focus on understanding how educational games, designed according to research-based learning and assessment design principles, can better assess and promote students' science knowledge, application of science process skills, and motivation and engagement in learning. The project will develop a new genre of games to serve as formative assessment resources designed to collect evidence of science learning during gameplay, provide feedback and coaching in the form of hints, and reinforce middle grade (6th-8th) students' life science concepts and investigation practices about ecosystems described in the Next Generation Science Standards (NGSS) (Achieve, 2013). The games will build on the designs of the simulation-based, curriculum-embedded assessments developed in previous NSF-funded efforts, which include student progress reports and reflection activities that allow teachers to provide feedback to students and adjust instruction. The design of the games will draw from multiple lines of research, such as cognition, particularly model-based learning; principled assessment design; and motivation. Intended to provide engaging activities for understanding and investigating the system components, roles, interactions, and population dynamics of ecosystems, the project will produce two sets of comprehensive games: (1) Organisms and Interactions, and (2) Emergent Population Levels: Managing an Ecosystem. Each game will consist of progressively advanced mini-games. Twenty-four California Bay Area middle school teachers will participate in the study. Teacher professional development (PD) will include face-to-face sessions and an online platform that permits a wide range of interactions among participants and the facilitators. The PD will emphasize the alignment of the ecosystem simulation-based curriculum modules with their state standards, instructional materials, and the new games. 

The project will address six research questions: (1) How well do the games align with the ecosystem crosscutting concepts, core ideas, and inquiry practices in the NGSS?; (2) How well do game components meet quality standards?; (3) How well do the games integrate with the existing simulation-based curriculum modules and the teachers' existing instructional sequence?; (4) What effect does the use of the games have on students' understanding of the science concepts, scientific practices, and collaboration skills?; (5) How does success in gameplay relate to improved performance on the external outcome measures comprised of the simulation-based benchmark and the pre/posttest?; and (6) How does the use of the games affect students' engagement in science learning? In a Year 1 usability study, the project will test, analyze, and revise alpha versions of the games. In Year 2, a classroom feasibility study of beta versions will inform further revisions. In Year 3, six teachers will pilot-test the games. A second pilot test in Year 4 will examine the effectiveness of the games by comparing student performance in classes using the existing simulation-based curriculum-embedded assessments and reflection activities with classes using the curriculum-embedded assessments plus the new games. Data collection and analysis strategies include: (a) alignment reviews; (b) focus groups and usability testing; (c) cognitive labs for construct validity and usability; (d) game reports (badges); (e) pre/posttest of American Association for the Advancement of Science (AAAS) items; (f) benchmark assessment data; (g) student interest in the games and science; (h) teacher surveys; (i) case studies; (j) game quality analysis; (k) differential item functioning; (l) analysis of covariance; and (m) analysis of variance on posttest scores (outcome variable) to compare the means across student groups (by intervention mode) and their prior science achievement levels.

Math Snacks Early Algebra Using Games and Inquiry to Help Students Transition from Number to Variable

This project will develop games to build conceptual understanding of key early algebra topics. The materials will be freely accessible on the web in both English and Spanish. The project will develop 4-5 games. Each game will include supporting materials for use by students in inquiry-based classroom lessons, and web-based professional development tools for teachers.

Lead Organization(s): 
Award Number: 
1503507
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Many U.S. students enter college without the necessary background in algebra to be successful in advanced mathematics and science courses, and are thereby blocked from many rewarding careers. Oftentimes, the problem goes back to early algebra in grades 4-6, where students are introduced to abstract formulations before they understand the underlying ideas and the reasons for the questions being asked. As a result of inadequate preparation many students turn away from mathematics when faced with abstract algebra. Without mathematics, students are not able to enter the STEM field which results in a weakened workforce in these fields in the United States. In this 4-year Full Research and Development project, Math Snacks Early Algebra: Using Games and Inquiry to Help Students Transition from Number to Variable, the interdisciplinary research group from New Mexico State University will build on their success in using games to increase students' understanding of proportional reasoning and fractions. They will develop games to build conceptual understanding of key early algebra topics. The materials will be freely accessible on the web in both English and Spanish. The project will develop 4-5 games. Each game will include supporting materials for use by students in inquiry-based classroom lessons, and web-based professional development tools for teachers.

Most students do not understand the variety of distinct ways that variables are used in mathematics: unknowns to be solved for, related quantities, general properties of numbers, and other uses. Algebra courses often emphasize the rules of manipulation, with less time spent on the underlying ideas. Students see variables as confusing new material, rather than as shortcuts for making sense of numbers, or as powerful tools for analyzing interesting problems. This hinders students' later interest and progress in STEM courses and careers.The intellectual merit for this R & D project includes the development of a new way to learn key underlying concepts in algebra, further investigation of the affordances of games and technology in learning abstract mathematical concepts, and a better understanding of learning assessment in early algebra. The broader impact for this R & D project includes making these tools widely available to students, and the potential shift of teachers towards effective mathematical pedagogy that is engaging and inquiry-based. Development will begin with existing research on early algebraic thinking and learning, and proceed through an iterative process involving design, testing in the NMSU Learning Games Lab, testing in classrooms, and back to design. The project will then study the effect of the developed materials on student understanding and on classroom learning environments. Qualitative and quantitative measures will be used. Researchers will use a custom measure aligned with NAEP (National Assessment of Educational Progress) and other standard tests, interviews and observations with teachers and students, and embedded data collection and self-reports on frequency and extent of game usage. After two earlier pilot studies, in the final year a delayed intervention study will be conducted with 50 teachers and their students. The Math Snacks team has existing partnerships for distribution of games and materials with PBS, GlassLabs, BrainPOP, and others. Academic findings of the project will be shared through conferences and research publications.

Thinking Spatially about the Universe: A Physical and Virtual Laboratory for Middle School Science (Collaborative Research: Sadler)

This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.

Partner Organization(s): 
Award Number: 
1502798
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena (moon phases and eclipses; planetary systems around stars other than the Sun; and celestial motions within the broader universe) in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers. The research program will determine which elements in the labs best promote both spatial skills and understanding of core ideas in astronomy; and how then to optimize interactive dynamic visualizations toward these ends. Virtual models of the sky and universe will be created using WorldWide Telescope, a free visualization tool that runs on desktop computers, tablets, and mobile devices. The ThinkSpace lab materials will be available at no cost on popular curriculum-sharing sites, including PBS Learning Media and BetterLesson.

The ThinkSpace team will address two main research questions: 1) How can spatial tasks that blend physical and virtual models be embedded into a STEM curriculum in ways that lead to significant improvements in spatial thinking? and 2) How can practitioners optimize design of interactive, dynamic visualizations for teaching spatially complex concepts? The first year of the study will examine two of the lab units with four teachers and about 320 students. The second year of the study will be similar. The third year of the study will test all three lab units in 10 classrooms. Over this study, each week-long ThinkSpace Lab will be formatively tested, using pre/post written assessments of astronomy content and spatial thinking; pre/post interviews with students; and in-class video of students using the lab activities. Scaffolded learning designs will support students in making connections between different spatial views of the phenomena, and will guide them to construct explanations and argue from evidence about how various phenomena (e.g. moon phases) arise in the real Universe, as Next Generation Science Standards demand. The impact of the ThinkSpace labs will be felt far beyond astronomy because the learning models being tested can transfer to other fields where spatial models are critical, and findings on optimization of dynamic visualizations can help to inform instructional design in the age of online learning. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Thinking Spatially about the Universe: A Physical and Virtual Laboratory for Middle School Science (Collaborative Research: Goodman)

This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503395
Funding Period: 
Wed, 07/01/2015 to Sat, 06/30/2018
Full Description: 

Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. This project will develop and study three week-long middle school lab units designed to teach spatial abilities using a blend of physical and virtual (computer-based) models. "ThinkSpace" labs will help students explore 3-dimensional astronomical phenomena (moon phases and eclipses; planetary systems around stars other than the Sun; and celestial motions within the broader universe) in ways that will support both understanding of these topics and a more general spatial ability. Students will learn both through direct work with the lab unit interface and through succeeding discussions with their peers. The research program will determine which elements in the labs best promote both spatial skills and understanding of core ideas in astronomy; and how then to optimize interactive dynamic visualizations toward these ends. Virtual models of the sky and universe will be created using WorldWide Telescope, a free visualization tool that runs on desktop computers, tablets, and mobile devices. The ThinkSpace lab materials will be available at no cost on popular curriculum-sharing sites, including PBS Learning Media and BetterLesson.

The ThinkSpace team will address two main research questions: 1) How can spatial tasks that blend physical and virtual models be embedded into a STEM curriculum in ways that lead to significant improvements in spatial thinking? and 2) How can practitioners optimize design of interactive, dynamic visualizations for teaching spatially complex concepts? The first year of the study will examine two of the lab units with four teachers and about 320 students. The second year of the study will be similar. The third year of the study will test all three lab units in 10 classrooms. Over this study, each week-long ThinkSpace Lab will be formatively tested, using pre/post written assessments of astronomy content and spatial thinking; pre/post interviews with students; and in-class video of students using the lab activities. Scaffolded learning designs will support students in making connections between different spatial views of the phenomena, and will guide them to construct explanations and argue from evidence about how various phenomena (e.g. moon phases) arise in the real Universe, as Next Generation Science Standards demand. The impact of the ThinkSpace labs will be felt far beyond astronomy because the learning models being tested can transfer to other fields where spatial models are critical, and findings on optimization of dynamic visualizations can help to inform instructional design in the age of online learning. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

SmartCAD: Guiding Engineering Design with Science Simulations (Collaborative Research: Chiu)

This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503170
Funding Period: 
Mon, 06/15/2015 to Fri, 05/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. 

In this project, SmartCAD: Guiding Engineering Design with Science Simulations, the Concord Consortium (lead), Purdue University, and the University of Virginia investigate how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. Through automatic feedback based on visual analytic science simulations, SmartCAD is able to guide every student at a fine-grained level, allowing teachers to focus on high-level instruction. Considering the ubiquity of CAD software in the workplace and their diffusion into precollege classrooms, this research provides timely results that could motivate the development of an entire genre of CAD-based learning environments and materials to accelerate and scale up K-12 engineering education. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment. These engines allow SmartCAD to analyze student design artifacts on a scientific basis and provide automatic formative feedback in forms such as numbers, graphs, and visualizations to guide student design processes on an ongoing basis. 

The research hypothesis is that appropriate applications of SmartCAD in the classroom results in three learning outcomes: 1) Science knowledge gains as indicated by a deeper understanding of the involved science concepts and their integration at the completion of a design project; 2) Design competency gains as indicated by the increase of iterations, informed design decisions, and systems thinking over time; and 3) Design performance improvements as indicated by a greater chance to succeed in designing a product that meets all the specifications within a given period of time. While measuring these learning outcomes, this project also probes two research questions: 1) What types of feedback from simulations to students are effective in helping them attain the outcomes? and 2) Under what conditions do these types of feedback help students attain the outcomes? To test the research hypothesis and answer the research questions, this project develops three curriculum modules based on the Learning by Design (LBD) Framework to support three selected design challenges: Solar Farms, Green Homes, and Quake-Proof Bridges. This integration of SmartCAD and LBD situate the research in the LBD context and shed light on how SmartCAD can be used to enhance established pedagogical models such as LBD. Research instruments include knowledge integration assessments, data mining, embedded assessments, classroom observations, participant interviews, and student questionnaires. This research is carried out in Indiana, Massachusetts, and Virginia simultaneously, involving more than 2,000 secondary students at a number of socioeconomically diverse schools. Professional development workshops are provided to familiarize teachers with SmartCAD materials and implementation strategies prior to the field tests. An external Critical Review Committee consisting of five engineering education researchers and practitioners oversee and evaluate this project formatively and summative. Project materials and results are disseminated through publications, presentations, partnerships, and the Internet.

SmartCAD: Guiding Engineering Design with Science Simulations (Collaborative Research: Xie)

This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.

Lead Organization(s): 
Award Number: 
1503196
Funding Period: 
Mon, 06/15/2015 to Fri, 05/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. 

In this project, SmartCAD: Guiding Engineering Design with Science Simulations, the Concord Consortium (lead), Purdue University, and the University of Virginia investigate how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. Through automatic feedback based on visual analytic science simulations, SmartCAD is able to guide every student at a fine-grained level, allowing teachers to focus on high-level instruction. Considering the ubiquity of CAD software in the workplace and their diffusion into precollege classrooms, this research provides timely results that could motivate the development of an entire genre of CAD-based learning environments and materials to accelerate and scale up K-12 engineering education. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment. These engines allow SmartCAD to analyze student design artifacts on a scientific basis and provide automatic formative feedback in forms such as numbers, graphs, and visualizations to guide student design processes on an ongoing basis. 

The research hypothesis is that appropriate applications of SmartCAD in the classroom results in three learning outcomes: 1) Science knowledge gains as indicated by a deeper understanding of the involved science concepts and their integration at the completion of a design project; 2) Design competency gains as indicated by the increase of iterations, informed design decisions, and systems thinking over time; and 3) Design performance improvements as indicated by a greater chance to succeed in designing a product that meets all the specifications within a given period of time. While measuring these learning outcomes, this project also probes two research questions: 1) What types of feedback from simulations to students are effective in helping them attain the outcomes? and 2) Under what conditions do these types of feedback help students attain the outcomes? To test the research hypothesis and answer the research questions, this project develops three curriculum modules based on the Learning by Design (LBD) Framework to support three selected design challenges: Solar Farms, Green Homes, and Quake-Proof Bridges. This integration of SmartCAD and LBD situate the research in the LBD context and shed light on how SmartCAD can be used to enhance established pedagogical models such as LBD. Research instruments include knowledge integration assessments, data mining, embedded assessments, classroom observations, participant interviews, and student questionnaires. This research is carried out in Indiana, Massachusetts, and Virginia simultaneously, involving more than 2,000 secondary students at a number of socioeconomically diverse schools. Professional development workshops are provided to familiarize teachers with SmartCAD materials and implementation strategies prior to the field tests. An external Critical Review Committee consisting of five engineering education researchers and practitioners oversee and evaluate this project formatively and summative. Project materials and results are disseminated through publications, presentations, partnerships, and the Internet.

SmartCAD: Guiding Engineering Design with Science Simulations (Collaborative Research: Magana-de-Leon)

This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.

Lead Organization(s): 
Award Number: 
1503436
Funding Period: 
Mon, 06/15/2015 to Fri, 05/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. 

In this project, SmartCAD: Guiding Engineering Design with Science Simulations, the Concord Consortium (lead), Purdue University, and the University of Virginia investigate how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. Through automatic feedback based on visual analytic science simulations, SmartCAD is able to guide every student at a fine-grained level, allowing teachers to focus on high-level instruction. Considering the ubiquity of CAD software in the workplace and their diffusion into precollege classrooms, this research provides timely results that could motivate the development of an entire genre of CAD-based learning environments and materials to accelerate and scale up K-12 engineering education. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment. These engines allow SmartCAD to analyze student design artifacts on a scientific basis and provide automatic formative feedback in forms such as numbers, graphs, and visualizations to guide student design processes on an ongoing basis. 

The research hypothesis is that appropriate applications of SmartCAD in the classroom results in three learning outcomes: 1) Science knowledge gains as indicated by a deeper understanding of the involved science concepts and their integration at the completion of a design project; 2) Design competency gains as indicated by the increase of iterations, informed design decisions, and systems thinking over time; and 3) Design performance improvements as indicated by a greater chance to succeed in designing a product that meets all the specifications within a given period of time. While measuring these learning outcomes, this project also probes two research questions: 1) What types of feedback from simulations to students are effective in helping them attain the outcomes? and 2) Under what conditions do these types of feedback help students attain the outcomes? To test the research hypothesis and answer the research questions, this project develops three curriculum modules based on the Learning by Design (LBD) Framework to support three selected design challenges: Solar Farms, Green Homes, and Quake-Proof Bridges. This integration of SmartCAD and LBD situate the research in the LBD context and shed light on how SmartCAD can be used to enhance established pedagogical models such as LBD. Research instruments include knowledge integration assessments, data mining, embedded assessments, classroom observations, participant interviews, and student questionnaires. This research is carried out in Indiana, Massachusetts, and Virginia simultaneously, involving more than 2,000 secondary students at a number of socioeconomically diverse schools. Professional development workshops are provided to familiarize teachers with SmartCAD materials and implementation strategies prior to the field tests. An external Critical Review Committee consisting of five engineering education researchers and practitioners oversee and evaluate this project formatively and summative. Project materials and results are disseminated through publications, presentations, partnerships, and the Internet.

Scientific Data in Schools: Measuring the Efficacy of an Innovative Approach to Integrating Quantitative Reasoning in Secondary Science (Collaborative Research: Mead)

Data Nuggets (http://datanuggets.org) are classroom activities, co-designed by scientists and teachers, which give students practice interpreting quantitative information and making claims based on evidence.

Lead Organization(s): 
Award Number: 
1503211
Funding Period: 
Wed, 07/15/2015 to Fri, 05/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. 

The goal of this research is to investigate whether the integration of real data from cutting-edge scientific research in grade 6-10 classrooms will increase students’ quantitative reasoning ability in the context of science. The Data Nuggets are activity-based resources that address current needs in STEM education and were developed by science graduate students and science teachers at Michigan State University through prior support from the NSF GK-12 program. The goal of Data Nuggets is to engage students in the practices of science through an innovative approach that combines scientific content from authentic research with key concepts in quantitative reasoning. Over the course of the project, partners from Michigan State University and BSCS will adapt the materials to address current science and mathematics standards, develop a professional development program for teachers, and test the efficacy of the materials through a quasi-experiment in the classrooms of 30 teachers in Michigan, Colorado, and California.

The evidence from this study will demonstrate whether short, targeted interventions of classroom activities embedded within a typical curriculum can impact student outcomes. A multi-site cluster randomized trial design will be used. Prior to the study teachers will participate in targeted professional development. Then, classrooms of the teachers in the study will be randomly assigned to either a treatment or comparison condition. Student outcomes measures will include understanding of quantitative reasoning in the context of science, understanding of the practices and processes of science, particularly in the areas of analyzing and interpreting data and using mathematics and computational thinking, engagement in the practices of science in the classroom, and motivation to engage in science and improved general interest in science.

In order to adequately train the next generation of citizens and scientists, we must understand how quantitative reasoning skills build upon each other throughout K-16 science education to prepare students for rigorous college science courses. In particular, there is a need for students to experience activities that emphasize how science is conducted, and apply their understandings of how scientists reason quantitatively (Mayes et al. 2014a, 2014b). Establishing the efficacy of Data Nuggets could provide the field with new information about supplementing existing curriculum with short interventions targeted at particular scientific practices. In addition, Data Nuggets allow scientists to share their research broadly, improving access to authentic science. Scientists who create Data Nuggets practice their communication skills and disseminate both the process of science and research findings to K-12 students (and perhaps their families), undergraduates, and teachers, improving the understanding of science in society. 

Precision Math: Using Interactive Gaming Technology to Build Student Proficiency in the Foundational Concepts and Problem Solving Skills of Measurement and Data Analysis

The purpose of this 4-year project is to improve student mathematics achievement by developing a mathematics intervention focused on key measurement and data analysis skills. The PM intervention will be designed for first and second grade students who are experiencing mathematics difficulties. To increase student mathematics achievement, the intervention will include: (a) a technology-based component and (b) hands-on activities.

Lead Organization(s): 
Award Number: 
1503161
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Strong knowledge of measurement and data analysis is essential to ensure competiveness of the nation as a whole and full access to educational and work opportunities for all students. Despite this importance, a considerable number of U.S. students, particularly students from poor and minority backgrounds, struggle with these two areas of mathematics. The purpose of this 4-year Research and Development project, Precision Mathematics (PM): Building Student Proficiency in the Foundational Concepts and Problem Solving Skills of Measurement and Data Analysis, is to improve student mathematics achievement by developing a mathematics intervention focused on key measurement and data analysis skills. The PM intervention will be designed for first and second grade students who are experiencing mathematics difficulties. To increase student mathematics achievement, the intervention will include: (a) a technology-based component that will provide students with individualized instruction and (b) hands-on activities that will offer opportunities for students to interact with their teacher and peers around critical measurement and data analysis concepts. Primary activities of the project will include intervention development, pilot testing, data analysis, and intervention revision. One primary benefit of PM is that it will provide struggling learners with meaningful access to critical concepts and skills identified in the Common Core State Standards Initiative. Another benefit is that will be designed to serve as a foundation for students to understand more advanced mathematical concepts introduced in the later grades. PM has the potential to address a concerning gap in U.S. education. To date, intervention research focused on measurement and data analysis is scant.

Proficiency with measurement and data analysis is essential for obtaining occupations in the STEM fields. A primary aim of this project is to develop PM, a mathematics intervention designed to teach key concepts of measurement and data analysis to at-risk 1st and 2nd grade students. Comprising the intervention will be technology-based and collaborative problem-solving activities. At each grade, the intervention will provide 20 hours of instruction focused on topics identified in the Common Core State Standards. A primary aim of the project is to develop the intervention using a design science approach, including a mix of qualitative and quantitative research methods that will guide iterative testing and revision cycles. A second primary aim is to test the promise of the intervention to improve student mathematics achievement. Rigorous pilot studies (i.e., randomized controlled trials) will be conducted in 1st and 2nd grade classrooms involving over 700 at-risk students. Within classrooms, students will be randomly assigned to treatment (PM) or control conditions (business as usual). Two research questions will be addressed: (a) What is the potential promise of the intervention when delivered in authentic education settings? (b) Based on empirical evidence, are revisions to the intervention's theory of change necessary? Tests of main effects of intervention effects will be conducted using analysis of covariance models, adjusting for pretest scores. Generated findings are anticipated to contribute to the knowledge base on early STEM learning for at-risk learners.

Personalizing Recommendations in a Large-Scale Education Analytics Pipeline (Collaborative Research: Ram)

This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.

Lead Organization(s): 
Award Number: 
1446138
Funding Period: 
Sun, 02/01/2015 to Tue, 01/31/2017
Full Description: 

This pilot project aims to begin to organize the world's digital learning resources to make personalized recommendations to learners that are engaging and effective in increasing mathematics learning outcomes. The project accomplishes this goal by developing crowdsourcing techniques to organize learning resources and by analyzing the online learning activities of the student. Teachers are an integral part of this project. The target audience for this pilot is 7th grade mathematics students and teachers.

This project builds upon the Gooru platform that serves a community of over 500,000 in 140 countries and all 50 US states. The platform uses crowdsourcing by its community to curate over 70,000 collections of free web resources consisting of over 16,000,000 education resources. This project builds upon the Gooru resources by using learning analytics on the user interactions within Gooru to discover the resources that most benefit students. Thus, student resources can be tailored to the individual student to maximally engage the student and improve the students learning. Since the Gooru user owns his or her data, explicit opt-in is required for the sharing of data thus protecting the privacy of students who wish not to share their data. Gooru is open source and free so there are no economic barriers (besides internet access) to using the platform.

Pages

Subscribe to Educational Technology