Educational Technology

Ecology Disrupted: Using Real Scientific Data About Daily Life to Link Environmental Issues to Ecological Processes in Secondary School Science Classrooms (Collaborative Research: Wyner)

We developed and tested two ecology case study units for urban high school students underserved in their connection to nature. The case studies, based on digital media stories about current science produced by the American Museum of Natural History, use current scientific data to link ecological principles to daily life and environmental issues. Preliminary testing results show that treatment students made significantly higher gains than the control students on the project's major learning goals.

Award Number: 
Funding Period: 
Tue, 09/01/2009 to Tue, 08/31/2010
Full Description: 

We have refined and tested wo case study units on contemporary issues in ecology for urban middle and high school students underserved in their connection to nature. The case studies are based on two Science Bulletins, digital media stories about current science produced by the American Museum of Natural History (AMNH), which use current scientific data to link ecological principles to real-world environmental issues, and to link issues to human daily life. One unit asks the question, ‘How might snowy and icy roads affect Baltimore’s water supply?’ The other asks the question, ’How might being able to drive between Los Angeles and Las Vegas in just four hours put local bighorn sheep at risk?’ The units provide source material and real data for students to investigate these questions, video profiles of scientists that engage students in the science and the research, and the Museum Science Bulletins media for students to analyze and connect the questions to broader ecological principles and issues. We are using these modules to research the question, “Can curricular units that link environmental issues to ecological principles through analysis of real data from published research on the environmental impacts of familiar everyday activities improve student learning of ecological principles, personal and human environmental impacts and the nature of scientific activity?” 


Randomized control trials in the classrooms of 40 ninth grade NYC public school teachers are being used to evaluate the efficacy of the modules.  Assessment items from New York State Regents exams were reviewed and new assessment items were developed, field tested, and analyzed for validity and reliability. Students in the experimental and control classrooms were pre- and post-tested using the assessments.  In addition, teachers completed pre-post surveys, and stratified samples of teachers were observed and interviewed. To evaluate the effects of the intervention on student achievement and on instructional practices, descriptive and inferential statistics, including analysis of variance (ANOVA) models are being employed to addressing the core research question about student achievement. ANOVA models are also being used to measure main effects and interactions between the intervention and other variables as they relate to student achievement. Preliminary analysis indicates that treatments students showed signficantly higher gains than control students on learning of three major project learning goals: 1. Understanding of ecological principles in the context of human impact 2. Understanding daily life in the context of human impact 3. Understanding the nature of scientific evidence.


Finally, we will apply our evaluation findings from testing the modules to develop a summative module on oyster fishing in the Chesapeake Bay. Also, in order to disseminate the materials online to a national audience, we will develop an online “kit of parts” of module components to enable teachers to create customized modules that target their students' specific instructional needs.

Formative Assessment in the Mathematics Classroom: Engaging Teachers and Students

This project is developing a two-year, intensive professional development model to build middle-grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model helps teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice.

Project Email: 
Award Number: 
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010
Project Evaluator: 
Cynthia Char
Full Description: 

Formative Assessment in the Mathematics Classroom: Engaging Teachers and Students (FACETS) 

This project is submitted as a full research and development project that addresses challenge #3, how can the ability of teachers to provide STEM education be enhanced?

The FACETS project will develop a 2-year, intensive professional development model to build middle grades mathematics teachers’ knowledge and implementation of formative assessment. Using a combination of institutes, classroom practice, and ongoing support through professional learning communities and web-based resources, this model will help teachers internalize and integrate a comprehensive understanding of formative assessment into daily practice. As part of the professional development model, we will create a variety of products:

  • a facilitator’s guide describing the components of the professional development model and suggestions for using the model to provide a professional development program,
  • cyberlearning products such as interactive forums and a vetted resource library, and
  • video and other materials for the professional development activities and resource library.

FACETS includes a formative research component centered on the following questions:

1. How do mathematics teachers’ knowledge and practice of formative assessment change as a result of participation in the proposed professional development?

2. What learning trajectory describes teachers’ learning about formative assessment, and what are common barriers to successful implementation?

Reports of research findings will include journal articles on teachers’ learning trajectory for formative assessment and common barriers to successful implementation faced by teachers.

Intellectual merit: Our field work, supported by existing research, has shown that math teachers have difficulty fully implementing formative assessment in their classroom. Existing professional development programs either present a comprehensive understanding without a focus on mathematics, or focus on mathematics but only emphasize some of the critical aspects needed to bring out the full potential of formative assessment. This project will develop a professional development model that a) presents a comprehensive understanding of formative assessment and b) focuses specifically on mathematics. Furthermore, this project proposes to contribute to the field of mathematics teacher education through a deeper insight into mathematics teachers’ learning and practice of formative assessment. This insight can be used by professional developers and teacher educators in mathematics to make decisions that help teachers progress more effectively in their learning. This project brings together a multi-disciplinary team with expertise in formative assessment, professional development, mathematics, mathematics education, and teacher education research.

Broader impacts: We anticipate that the professional development will have an immediate impact on participating teachers, and on their students, as they learn about and implement formative assessment in their classrooms. Individual districts and schools have expressed an interest in the FACETS professional development program. The New Hampshire State Department of Education also indicates support for statewide implementation. In addition, research results regarding teachers’ learning trajectories for formative assessment will be crucial to inform future professional development and teacher education programs, and to help teachers reflect on, and guide, their own learning. Data regarding the major barriers to teachers’ learning of formative assessment will also impact future professional development by identifying issues needing additional focus, as will data regarding the effect on those barriers of factors such as teaching experience and mathematical knowledge for teaching. Finally, as there is a paucity of video and other examples of formative assessment in mathematics classrooms, the resource library will make widely available a sorely needed resource to teachers grappling with understanding and implementing formative assessment in mathematics classrooms in a practical way.

Electronic Teacher Guide: Its Development and Use in Supporting Educative Curricula

This project is developing and testing a prototype electronic teacher's guide for a 12-week genetics unit in the NSF-funded curriculum titled Foundation Science: Biology to determine how it impacts high school teachers' learning and practice. The electronic guide, which is based on an existing print guide, has a flexible design so that it anticipates and meets the curriculum planning and support needs of teachers with different knowledge/skills profiles.

Award Number: 
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Project Evaluator: 
Kathleen Haynie
Full Description: 

eTG Overview Poster

The hallmark of many inquiry-based curricula is a hefty teacher guide that accompanies the student materials.  These teacher guides are generally designed to be ‘educative’, intended both to help teachers implement the materials with fidelity to the  developers’ intentions and to give teachers opportunities to incorporate new instructional practices into their teaching such as guided inquiry, sense-making discussions, and formative assessment.  In many cases, the teacher guide may be the only professional development experience teachers have when embarking on the implementation of a new curriculum. 

Yet despite the best intentions of curriculum developers in providing accessible and useful teacher support materials, use of teacher guides is often random and occasional. The guides tend to be large, dense, and separate from the student books, making them unwieldy, difficult to navigate, and time consuming to use. Teachers may not realize the importance of these guides in the implementation of the materials, assuming that the contents are ancillary and supplemental. However evidence from field tests of these curricula indicate that when teachers do use them, they find them excellent resources that support the teaching of the curriculum and the acquisition of new instructional strategies.

To determine whether digital technology can make large print teacher guide more accessible and useful, EDC is developing an electronic Teacher Guide (eTG) based on the print guide for Foundation Science: Genetics. Our goal is to develop a cybertool that helps teachers plan and teach their curriculum, reflect on its execution, and enhance their teaching practice. The eTG is a cloud-based web application that lets teachers access the Foundation Science curriculum and their planning and teaching notes anytime, anywhere.  In the tool they find teaching tips, strategies and videos that are aligned with the student materials, features that encourage them to mindfully modify the curriculum with fidelity to intentions of curriculum, and slides that once modified, can be saved and projected for students to guide their inquiries.   

The centerpiece of the eTG is the Foundation Science: Genetics curriculum, in the form of an eBook that includes the text of both the student book and teacher guide. Included are a variety of digital supports, features that help teachers Plan, Teach, and Reflect on their curriculum and teaching. In Plan mode teachers can a) see graphic overviews of the teaching sequence, b) modify a basic “deck” of slides for their students while keeping the developers’ intent in mind, c) draw on a set of filtered web resources in adding to the materials, and d) can access videos and other graphical and text supports to help students have rich and grounded discussions about the meaning of the classroom activities and readings.  In Teach mode, teachers project their modified ‘slide deck’ and use it to guide student interaction and discussion.  As they proceed, teachers can modify their decks as needed. The Reflect mode provides checklists which enable the teacher to self-assess her/his attainment of the key goals of the learning experience and to make decisions about modifications of the material for the future.

In the midst of the fourth year of the eTG project, we have completed the prototype, tested it with teacher users for appeal, comprehensibility and effectiveness, and carried out field tests in several classrooms to investigate how and to what end teachers use the different features, and with what outcomes. The final year of the project will see a second round of classroom field-testing, data analysis and dissemination of our findings in the form of comparative case studies.

Science Learning: Integrating Design, Engineering and Robotics (SLIDER)

This project is developing and implementing a rigorous eighth grade physical science program that utilizes engineering design, LEGO™ robotics and mechanics, and a problem-based learning approach to teach mechanics, waves, and energy.

Award Number: 
Funding Period: 
Thu, 10/01/2009 to Tue, 09/30/2014
Project Evaluator: 
Dr. Gordon Kingsley
Full Description: 

SLIDER is a 5 year $3.5 million grant from the National Science Foundation's (NSF) Discovery Research K-12 (DR-K12) program. During the grant period (10/1/09 -9/30/14), the SLIDER program will seek to answer the question: "What effects do robotics, engineering design, and problem-based inquiry science have on student learning and academic engagement in 8th grade physical science classes?"

The Team:

Georgia Tech faculty and staff from a number of academic units (CEISMC, CETL, Math, Psychology, Biomedical Engineering & Computing) and a national-level advisory board.  

Teachers, principals and school system administrators representing Fulton County Schools, Cobb County Schools  and Emanuel County Schools and the Georgia Department of Education.

Richard Millman  PI
Marion Usselman  Co - PI
Donna Llewellyn Co-PI for Research

Program Goals:

  1. Design and implement a problem-based robotics curriculum as a context for 8th graders to learn physics and reasoning skills, and as a way to increase student engagement, motivation, aptitude, creativity and STEM interest.
  2. Conduct research to determine the effectiveness of the program across all curriculum development parameters.
  3. Determine how students engage the material across ethnic, socio- cultural, gender and geographic (rural, urban, and suburban) lines.
  4. Measure the “staying power” of the experience as students move from middle to high school.

The Method:

Using “backwards design” strategies, the SLIDER curriculum development team at CEISMC will create inquiry-based engineering design instructional materials for 8th grade Physical Science that use robotics as the learning tool and that are aligned with the Georgia Performance Standards (GPS). The materials will employ problem-based challenges that require students to design, program, investigate, and reflect, and then revise their product or solution. They will consist of three 4-6 week modules that cover the physics concepts of Mechanics (force, motion, simple machines), Waves (light, sound, magnetism, electricity, heat), and Energy.   CEISMC will also design the teacher professional development necessary for effective implementation of the curriculum.

Simulation and Modeling in Technology Education (SMTE)

This project develops and researches the academic potential of a hybrid instructional model that infuses computer simulations, modeling, and educational gaming into middle school technology education programs. These prototypical materials use 3-D simulations and educational gaming to support students’ learning of STEM content and skills through developing solutions to design challenges.

Project Email: 
Lead Organization(s): 
Award Number: 
Funding Period: 
Fri, 08/01/2008 to Sun, 07/31/2011
Project Evaluator: 
Dr. Deborah Hecht


Subscribe to Educational Technology