Engineering

INFEWS/T4: The INFEWS-ER: a Virtual Resource Center Enabling Graduate Innovations at the Nexus of Food, Energy, and Water Systems

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience. The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students through a virtual resource center to help develop systematic processes for interdisciplinary thinking about large societal problems, especially those at the nexus of food, energy, and water.

Award Number: 
1639340
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This project will provide a virtual environment for completing the Food, Energy, and Water (FEW) graduate student experience, thereby facilitating the generation of human capital who can address grand challenges at the nexus of food, energy, and water. The INFEWS-ER will provide educational resources (ER) targeting innovations at the nexus of FEW by combining the fundamental sciences of food, energy, and water with the skills and knowledge of interdisciplinary problem solving and the latest computational modeling and analysis tools and data. These individuals will be capable of analyzing scenarios at the scale of nations, continents, and the globe. The INFEWS-ER will offer certificate programs where FEW Graduate Scholars can demonstrate their capabilities in interdisciplinary thinking, Big Data, and computational modeling and analysis, thereby receiving a credential demonstrating their level of achievement. Further, The INFEWS-ER will offer a faculty fellowship program to incentivize a network of academics that will provide a scaffolded learning environment for graduates, effectively creating a hub for INFEWS research, education, and training.

The proposed work facilitates a transition from interdisciplinary to transdisciplinary training of existing faculty and current graduate students (who will become future faculty, practitioners, and policy makers) through a virtual resource center that will be accessible beyond the project team and project timeframe. Students will develop systematic processes for interdisciplinary thinking. They will be in the best possible position to target large societal problems, especially those at the nexus of food, energy, and water. New, interdisciplinary solutions will emerge, solutions that are sensitive to a wider array of constraints and ideals. Those solutions will reflect the best possible integration of technological, socio-economic, and socio-political constructs. Project impacts include educational and workforce development of the next generation of academics, multi-institution collaboration, and enhanced infrastructure for transdisciplinary research and education. The INFEWS-ER also has the potential to influence the way interdisciplinary research and education is implemented in the future through the archival dissemination of not only learning modules, but also the evaluations and lessons learned from the implementation of the center.

Supporting English Learners in STEM Subjects

This project will conduct a study to identify instructional practices and professional development approaches for teachers and the policies needed to support ELLs' accomplishments in science and math. The study will synthesize research relevant to improving ELLs' STEM learning, offer insight into how to support both English language development and science and math learning, and provide a framework for future research to help identify the most relevant and pressing questions for the field.

Lead Organization(s): 
Award Number: 
1636544
Funding Period: 
Thu, 09/01/2016 to Thu, 02/28/2019
Full Description: 

The expectation that all students, including English language learners (ELLs), achieve high academic standards has become even more evident and complex to date as a result of several key factors. First, as the school-aged population continues to grow more racially, ethnically, and linguistically diverse, ELLs can now be found in virtually every school in the nation. Second, the science and mathematics education landscape has changed significantly resulting from the new visions in these fields, and the challenges posed by the new academic standards for all students. Third, the need to integrate new knowledge and perspectives from the language arts with knowledge from science and mathematics learning, instruction, and assessment has surfaced as a critical component of the potential strategies to be employed in addressing ELLs' current science, technology, engineering, and mathematics (STEM) education situation from pre-K-12 grades. The key challenges today include both enabling educators to better support this student subpopulation, as well as increasing the number and quality of research activities focused on how best to support ELLs' success in these subjects. In response to this challenge, the Board on Science Education (BOSE) of the National Academies of Sciences will conduct a consensus study focused on identifying instructional practices and professional development approaches for teachers, as well as the policies that are needed to support ELLs' accomplishments in science and mathematics education. The study will synthesize a wide range of research literatures relevant to improving ELLs' STEM learning, and provide a comprehensive understanding of how best to simultaneously support English language development and deep learning in the context of new and more challenging standards in science and mathematics. The study will also provide a framework for future research that can help to identify the most relevant and pressing questions for the field, as well as increase the number and quality of proposed research activities focused on ELLs in STEM.

To conduct the consensus study, BOSE will convene a multidisciplinary committee of experts who will synthesize the most relevant research on related subjects. The committee will include professionals in the fields of science and mathematics education, curriculum development, learning and instruction, linguistics, and assessment to address key sets of research questions: (1) Based on research-informed and field-tested models, strategies, and approaches, what are promising approaches to support ELLs (including ELLs with disabilities) in learning STEM? Given the diversity within the ELLs' population, what has worked, for whom, and under what conditions? What can be learned from these models and what additional research is needed to understand what makes them effective? What commonly used approaches may be less effective?; (2) What is the role of teachers in supporting the success of ELLs in STEM? What is known about the biases teachers may bring to their classrooms with ELLs and how these can be effectively addressed? What kinds of curriculum, professional development experiences, and assessment are needed in order for STEM teachers to improve their support for ELLs in STEM?; (3) How can assessments in STEM (both formative and summative) be designed to reflect the new content standards and to be appropriate for ELLs? What assessment accommodations might need to be considered?; (4) How do policies and practices at the national, state, and local level constrain or facilitate efforts to better support ELLs in STEM (including policies related to identification of students)? What kinds of changes in policy and practice are needed?; and (5) What are the gaps in the current research base and what are the key directions for research, both short-term and long-term? The committee will work over a 30-month period to synthesize relevant research literature and prepare a final consensus report, including results, conclusions, and recommendations. The study will address an issue of national importance and will inform future research on challenges directly related to ELLs, diversity, and equity in STEM education. This issue is particularly relevant to programs such as Discovery Research K-12 that supports efforts that reflect the needs of the increasingly diverse population, and Innovative Technology Experiences for Students and Teachers, which supports strategies for recruiting and selecting participants from identified groups currently underrepresented in STEM professions, careers, and education pathways. The report will target a broad audience of stakeholders, including teachers, school district administrators, researchers, congressional staff, and federal agencies that fund educational research and set policies related to ELLs.

Developing a Model of STEM-Focused Elementary Schools (eSTEM)

This project will study five elementary STEM schools from across the U.S. that are inclusive of students from underrepresented groups in order to determine what defines these schools and will use an iterative case study replication design to study the design and implementation of five exemplary eSTEM schools with the goal of developing a logic model that highlights the commonalities in core components and target outcomes across the schools, despite the different school contexts.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621005
Funding Period: 
Mon, 08/15/2016 to Wed, 07/31/2019
Full Description: 

In the United States (U.S.) certain groups are persistently underrepresented in science, technology, engineering, and mathematics (STEM) education and careers, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. Policymakers argue that future STEM workforce needs will only be met if there is broader diversity participating in STEM education and careers. Recent reports have suggested that the nation would benefit from more STEM-focused schools, including at the elementary school level, to inspire interest and prepare students for future STEM endeavors. However, there is currently little information on the number and quality of elementary STEM (eSTEM) schools and the extent to which underrepresented groups have access to them. This project will study five elementary STEM schools from across the U.S. that are inclusive of students from underrepresented groups in order to determine what defines these schools. The project team, which includes investigators from SRI International and George Mason University, initially identified twenty candidate critical components that define inclusive STEM-focused elementary schools and will refine and further clarify the critical components through the research study. The resulting research products could support the development of future eSTEM schools and research on their effectiveness.

The Discovery Research K-12 (DRK-12) program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models, and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This Exploratory Learning Strand project will use an iterative case study replication design to study the design and implementation of five exemplary eSTEM schools with the goal of developing a logic model that highlights the commonalities in core components and target outcomes across the schools, despite the different school contexts. A framework of twenty design components, taken from research on inclusive STEM high schools and research on successful elementary schools, will inform the data collection, analysis, and logic model development. Schools as critical cases will be selected through a nomination process by experts, followed by screening and categorization according to key design components. School documents and public database information, a school survey, and telephone interviews with school administrators will inform screening and selection of candidate schools. Researchers will then conduct multi-day, on-site visitations to each selected school, collecting data from classroom observations, interviews with students, focus groups with teachers and administrators, and discussions with critical members of the school community. The project is also gathering data on school-level student outcome indicators. Using axial and open coding, the analysis aims to develop rich descriptions that showcase characteristics of the schools to iteratively determine a theory of action that illustrates interconnections among context, design, implementation, and outcomes. Research findings will be communicated through a logic model and blueprint, school case study reports, and conference proceedings and publications that will be provided on a project website, providing an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. Findings will also be disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations, and webinars.

CAREER: A Study of Factors that Affect Middle School Levels of Readiness for Implementing STEM Programs

This project will investigate whether six urban middle schools are implementing highly effective science, technology, engineering and mathematics (STEM) programs based on factors identified through relevant research and national reports on what constitutes exemplary practices in 21st century-focused schools.

Lead Organization(s): 
Award Number: 
1553098
Funding Period: 
Mon, 02/15/2016 to Sun, 01/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) proposal responsive to Program Solicitation NSF 15-555. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. This project will investigate whether six urban middle schools are implementing highly effective science, technology, engineering and mathematics (STEM) programs based on factors identified through relevant research and national reports on what constitutes exemplary practices in 21st century-focused schools. The project will make this determination through the use of a STEM level of readiness rubric developed through a previous award that will be further revised through this study. The rubric will document the participating schools' level of readiness at the principal, teacher, and student levels using 15 criteria that include a combination of essential supports, core elements, attributes, and characteristics about STEM through: (1) school leadership as the driver of change in education; (2) professional capacity among teachers and staff in all academic areas; (3) student-centered learning climate reflective of high-quality teaching and learning practices; and (4) investment of resources (e.g. staffing, time, space, materials and supplies, partnerships) that support exemplary school-based programs.

The project will use surveys, focus groups, and face-to-face interviews to collect data from 18 principals; classroom observations and a survey to collect data from 380 teachers, and a survey to collect data from 3700 students. These data collections, augmented by other intermittent research activities, will provide insights about extant programs in participating schools regarding effective school leadership, state-of-the art teaching and learning practices, and the impact on students' interest, motivation, and self-efficacy about STEM education. The primary outcome from this project will be a field-tested jointly refined STEM level of readiness rubric based on input from principals, teachers, and students with guidance from the project's advisory board and the Center for Research in Educational Policy at the University of Memphis. The rubric will be instrumental in informing district-level education stakeholders and university-partner decision-makers' choices about where and when to invest resources to further support the development of higher quality STEM programs and schools. It will also be useful in identifying ways to improve students' overall perceptions about future courses of study and careers and the development of professional development modules for teacher training. Beyond these key school district-level outcomes, results will be used to enhance teacher preparation efforts through further refinement of methods courses and the STEM Teacher Leadership Certificate Program at the University.

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 to Wed, 06/30/2021
Full Description: 

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

Systemic Transformation of Inquiry Learning Environments for STEM (STILE 2.0)

The project is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.

Lead Organization(s): 
Award Number: 
1621387
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project at The Center for Technology and School Change (CTSC) at Teachers College, Columbia University, is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. This project will explore the most effective features for preparing teachers to design and implement authentic STEM learning experiences in twelve high need elementary and middle urban schools across New York City and Yorkers. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.

Participants in this project will design and implement transdisciplinary STEM projects and learn to develop and support STEM learning environments for their schools. As part of this overall process, researchers will refine a situated professional development curriculum, including a suite of digital case studies that will assist schools. The project will: 1) build a vision for trans-disciplinary STEM schooling; 2) design and implement STEM learning experiences; and 3) take capacity-building steps to sustain STEM practices. A mixed method design approach will be used to explore both the implementation of the project and the effect of implementation on participants.

Transforming Teaching Through Implementing Inquiry (T2I2)

This project explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases the educator's teaching competencies and how to effectively teach. Student achievement is measured by comparing state assessments in: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment.

Award Number: 
1156629
Funding Period: 
Mon, 08/01/2011 to Fri, 07/31/2015
Full Description: 

Transforming Teaching Through Implementing Inquiry (T2I2) is a full research and development project that explores the use of cyberinfrastructure to significantly enhance the delivery and quality of professional development (PD) for grades 8-12 engineering, technology, and design educators. The goal of the project is to study whether the use of highly interactive cyberinfrastructure increases this target audience's: 1) understanding of engineering design concepts and ability to effectively teach them 2) understanding of how to address student learning needs 3) ability to manage, monitor, and adjust the learning environment 4) use of self assessment to enhance teaching ability and 5) engagement in a community of practice. These issues are of particular interest because of the limited resources in place to prepare pre-service engineering and CTE teachers, as well as a lack of in-service PD.

The content for the PD is grounded in the materials and processes of two projects reviewed by the National Research Council's (NRC) report review committee: Technology Education: Learning by Design for Middle Schools" and "Engineering by Design for High Schools." By incorporating an object-oriented generic system design (learning objects), the cyberinfrastructure is set to be reusable, adaptable, and scalable. These learning objects allow for customization of the learning experience, whereby learning facilitators or learners themselves can configure the system based on their specific needs. Delivering learning objects in an online framework enables teachers to develop and grow in a network community.

A mixed methods approach is used to determine effects of professional development. Student achievement is measured by comparing each site's state assessments in the following areas: the curriculum's technology, engineering, and design assessment, end-of-grade mathematics assessment, and end-of-grade science assessment. Both formative and summative evaluation strategies inform the development and implementation of the project. As such, the project will advance theory, design, and practice in middle and high school engineering.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards

This project will conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level which is aligned with the Next Generation Science Standards (NGSS).

Award Number: 
1551143
Funding Period: 
Tue, 09/01/2015 to Thu, 08/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Developing Integrated Elementary Science, Engineering, and Language Arts Curricula Aligned with Next Generation Science Standards is an exploratory project to conduct a study to develop and field-test curricula integrating science, engineering, and language arts at the elementary level. Research and Curriculum Development team consisting of master elementary science teachers, university professors including science, engineering, and science teacher education faculty, and a science education post doc or graduate student will engage in developing the Next Generation Science Standards (NGSS) aligned curricula integrating science, engineering, and language arts, and publishing STEM education research. The importance of this project will be the development of curricula integrating science, engineering, and language arts at the elementary level. Lesson plans or teaching activities in the integrated curricula will be written in practitioner article format. In the NGSS the engineering design is raised to the same level as scientific inquiry and included as a vital element of science education. This integrated approach aims to provide three-dimensional learning experience as specified in the NGSS to elementary students while meaningfully integrating engineering, science, reading, and writing through real life engineering design problems. The NGSS aligned curricula that will be developed in this project can also be used in other states that adopted the NGSS.

An Integrated curriculum for grades 1-2 will be developed in year 1. In year 2, the project will develop a curriculum for grades 3-5. Each year, the project will develop and field-test a new curriculum, and provide professional development organized around the integrated curriculum to 20 elementary teachers at the Clark County School District in Las Vegas, Nevada.

Tools for Teaching and Learning Engineering Practices: Pathways Towards Productive Identity Work in Engineering

Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering). 

Lead Organization(s): 
Award Number: 
1502755
Funding Period: 
Fri, 05/01/2015 to Tue, 04/30/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering). I-Engineering will support identity development as a part of learning two core practices in engineering: 1) defining problems and 2) designing solutions. In particular, the I-Engineering framework and tools will help middle grades teachers and students engage in the engineering design process using meaningful, authentic and often youth-driven contexts. The project will ground this work in two engineering design challenges: 1) safe and green commutes and 2) portable energy, both of which exemplify engineering for sustainable communities. The objectives are to: 1) To develop research-based understandings of how to support identity development among middle school students from underrepresented backgrounds in the context of learning engineering. 2) To develop and refine a framework and tools (I-Engineering) in support of student learning and identity development in engineering with a focus on sustainability. 3) To collaborate with grades 6 and 7 teachers to implement and refine I-Engineering for classroom use. 4) To study whether the I-Engineering framework/tools support identity development in engineering among middle school students from underrepresented backgrounds. 

The project draws upon design-based implementation research to develop and test the I-Engineering framework and tools among students and teachers in grades 6 and 7. Using social practice theory, how aspects of the learning environment shape identity development will be identified, yielding information on the impact of the instructional tools generated. The research questions are grounded in two areas: supporting identity development in engineering, understanding how students progress in their engineering development and patterns across implementation of the I-Engineering resources. Studies will shed light on mechanisms that support identity development in engineering, how that might be scaffolded, and how such scaffolds can transport across context. The mixed-method student- and classroom-level studies will allow for empirical claims regarding how and under what conditions youth from underrepresented backgrounds may progress in their identity development in engineering. The research plan includes student case studies drawing on task-based interviews, observations and student work and classroom studies using observations, student and teacher interviews, an engineering identity survey, student work and formative assessments of engineering practices. I-Engineering will reach over 500 students and their teachers in schools that serve predominantly underrepresented populations. The project team will disseminate the findings, framework and tools in support of teaching engineering practices, and promoting understanding of the importance of identity development in broadening participation.

STEM Practice-Rich Investigations for NGSS Teaching (SPRINT)

This is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning.

Lead Organization(s): 
Award Number: 
1503153
Funding Period: 
Mon, 06/01/2015 to Wed, 05/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.


Project Videos

2019 STEM for All Video Showcase

Title: Immersed in Phenomena: Helping Teachers Transition to NGSS

Presenter(s): Julie Yu, Sara Heredia, & Jessica Parker


Pages

Subscribe to Engineering