Earth/Environmental Science

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417040
Funding Period: 
Tue, 07/01/2014 to Sat, 06/30/2018
Full Description: 

The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

Investigating How to Enhance Scientific Argumentation through Automated Feedback in the Context of Two High School Earth Science Curriculum Units

This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. 

Lead Organization(s): 
Award Number: 
1418019
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

With the current emphasis on learning science by actively engaging in the practices of science, and the call for integration of instruction and assessment; new resources, models, and technologies are being developed to improve K-12 science learning. Student assessment has become a nationwide educational priority due, in part, to the need for relevant and timely data that inform teachers, administrators, researchers, and the public about how all students perform and think while learning science. This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. The project will apply advanced automated scoring tools to students' written scientific arguments, provide individual students with customized feedback, and teachers with class-level information to assist them with improving scientific argumentation. The key outcome of this effort will be a technology-supported assessment model of how to advance the understanding of argumentation, and the use of multi-level feedback as a component of effective teaching and learning. The project will strengthen the program's current set of funded activities on assessment, focusing these efforts on students' argumentation as a complex science practice.

This design and development research targets high school students (n=1,940) and teachers (n=22) in up to 10 states over four years. The research questions are: (1) To what extent can automated scoring tools, such as c-rater and c-rater-ML, diagnose students' explanations and uncertainty articulations as compared to human diagnosis?; (2) How should feedback be designed and delivered to help students improve scientific argumentation?; (3) How do teachers use and interact with class-level automated scores and feedback to support students' scientific argumentation with real-data and models?; and (4) How do students perceive their overall experience with the automated scores and immediate feedback when learning core ideas in climate change and fresh-water availability topics through scientific argumentation enhanced with modeling? In Years 1 and 2, plans are to conduct feasibility studies to build automated scoring models and design feedback for previously tested assessments for the two curriculum units. In Year 3, the project will implement design studies in order to identify effective feedback through random assignment. In Year 4, a pilot study will investigate if effective feedback should be offered with or without scores. The project will employ a mixed-methods approach. Data-gathering strategies will include classroom observations; screencast and log data of teachers' and students' interaction with automated feedback; teachers' and students' surveys with selected- and open-ended questions; and in-depth interviews with teachers and students. All constructed-response explanations and uncertainty items will be scored using automated scoring engines with fine-grained rubrics. Data analysis strategies will include multiple criteria to evaluate the quality of automated scores; descriptive statistical abalyses; analysis of variance to investigate differences in outcomes from the designed studies' pre/posttests and embedded assessments; analysis of covariance to investigate student learning trajectories; two-level hierarchical linear modeling to study the clustering of students within a class; and analysis of screencasts and log data.

Implementation of the Next Generation Science Standards at the State Level: A Conference to Determine the Role of the Earth and Space Sciences Community

This conference is to develop a strategy for increasing the import of teaching Earth and Space Sciences in schools to make students ready for college and careers. The summit brings together key members of the Earth and Space Sciences (ESS) community to identify and devise ways in which they can work together to help states and school districts implement college and career readiness standards.

Partner Organization(s): 
Award Number: 
1440579
Funding Period: 
Tue, 07/01/2014 to Thu, 12/31/2015
Full Description: 

The American Geosciences Institute (AGI) and the National Association of Geoscience Teachers (NAGT) propose to host a fall 2014 summit on implementation of standards for college and career readiness at the state level. The summit brings together key members of the Earth and Space Sciences (ESS) community to identify and devise ways in which they can work together to help states and school districts implement college and career readiness standards. A needs assessment is conducted before the summit to determine the top concerns of the stakeholders and a collaborative website is created. At the conference, a collection of standards-congruent ESS educational resources are identified and assembled. The conference report describes concrete guidelines for disseminating these resources to translate the vision and structure of the standards into teaching and learning practice.

A 2.5 day working meeting for 30 experts and stakeholders consists of short plenaries to establish the context for each set of working group sessions. The proposed plenary speakers are Steven Pruitt from Achieve, Michael Wysession, one of the lead writers of the ESS portion of the Next Generation Science Standards (NGSS), and panels of science supervisors from states that have and have not adopted the standards. In the working group sessions, conferees identify products and services that the geoscience and geoscience education community can develop to help states implement the ESS portion of the standards. A key component of the Summit is action items to move the agenda of the conference forward in the states, and commitment of the participants to follow through on the various findings of the conference is emphasized. As part of the selection process individuals will be asked for a commitment from the organizations they represent to participate in follow-up actions from the Summit. The conference and its impacts will be measured by an external evaluator

This conference is to develop a strategy for increasing the import of teaching Earth and Space Sciences in schools to make students ready for college and careers.

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Developing and Testing the Internship-inator, a Virtual Internship in STEM Authorware System

The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

Award Number: 
1418288
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Ensuring that students have the opportunities to experience STEM as it is conducted by scientists, mathematicians and engineers is a complex task within the current school context. This project will expand access for middle and high school students to virtual internships, by enabling STEM content developers to design and customize virtual internships. The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. The researchers in this project will work with a core development network to develop and refine the authorware, constructing up to a hundred new virtual internships and a user group of more than 70 STEM content developers. The researchers will iteratively analyze the performance of the authorware, focusing on optimizing the utility and the feasibility of the system to support virtual internship development. They will also examine the ways in which the virtual internships are implemented in the classroom to determine the quality of the STEM internship design and influence on student learning.

The Intership-inator builds on over ten years of NSF support for the development of Syntern, a platform for deploying virtual internships that has been used in middle schools, high schools, informal science programs, and undergraduate education. In the current project, the researchers will recruit two waves of STEM content developers to expand their current core development network. A design research perspective will be used to examine the ways in which the developers interact with the components of the authorware and to document the influence of the virtual internships on student learning. The researchers will use a quantitative ethnographic approach to integrate qualitative data from surveys and interviews with the developers with their quantitative interactions with the authorware and with student use and products from pilot and field tests of the virtual internships. Data-mining and learning analytics will be used in combination with hierarchical linear modeling, regression techniques and propensity score matching to structure the quasi-experimental research design. The authorware and the multiple virtual internships will provide researchers, developers, and teachers a rich learning environment in which to explore and support students' learning of important college and career readiness content and disciplinary practices. The findings of the use of the authorware will inform STEM education about the important design characteristics for authorware that supports the work of STEM content and curriculum developers.

Driven to Discover: Citizen Science Inspires Classroom Investigation

This project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings.

Award Number: 
1417777
Funding Period: 
Wed, 10/01/2014 to Sun, 09/30/2018
Full Description: 

Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.

Bio-Sphere: Fostering Deep Learning of Complex Biology for Building our Next Generation's Scientists

The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. Research teams will develop an innovative learning environment called Bio-Sphere, which will foster learning of complex science issues through hands-on design and engineering.

Award Number: 
1418044
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Today's citizens face profound questions in science. Preparing future generations of scientists is crucial if the United States is to remain competitive in a technology-focused economy. The biological sciences are of particular importance for addressing some of today's complex problems, such as sustainability and food production, biofuels, and carbon dioxide and its effect on our environment. Although knowledge in the life sciences is of critical importance, this is an area in which there are significantly fewer studies examining students' conceptions than in physics and chemistry. The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. A major strength of Bio-Sphere is the inclusion of hands-on design and engineering in biology, a field in which there are fewer instances of curricula that integrate engineering design at the middle school level. The units will enable an in-depth, cohesive understanding of science content, and Bio-Sphere will be disseminated nationally and internationally through proactive outreach to teachers as well as scholarly publications.

This project addresses the need to inculcate deep learning of complex science by bringing complex socio-scientific issues into middle school classrooms, and providing students with instructional materials that allow them to practice science as scientists do. Research teams will develop, iteratively refine and evaluate an innovative learning environment called Bio-Sphere. Bio-Sphere combines the strengths of hands-on design and engineering, engages students in the practices of science, and fosters learning of complex science issues, especially among underserved populations. Each Bio-Sphere unit presents a complex science issue in the form of a design challenge that students solve by conducting experiments, using visualizations in an electronic textbook, and connecting with the community. The units, aligned with the Next Generation Science Standards, provide greater coherence, continuity, and sustained instruction focused on uncovering and integrating key ideas over long periods of time. The project will follow a design-based research methodology. In Phase 1, the Bio-Sphere materials will be developed. Phase 2 will consist of studies in Wisconsin schools to generate existence proofs, i.e., examining enactments with respect to the designed objectives to understand how a design works. Phase 3 studies will focus on practical implementation: how to bring this innovative design to life in very different classroom contexts and without the everyday support of the design team, and will be conducted in rural schools in Alabama and North Carolina.

An Integrated Instructional Model for Accelerating Student Achievement in Science and Literacy in Grades 1-2

This research and development project is focused on accelerating both student science understanding and reading comprehension proficiency at the primary level (grades 1-2). The project is being implemented in diverse classrooms and addresses age-appropriate content from the areas of the physical, earth/environmental, and life sciences.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316433
Funding Period: 
Sun, 09/15/2013 to Fri, 08/31/2018
Full Description: 

Despite over twenty years of educational reform, student achievement in science, along with reading comprehension, has remained a systemic problem for both regular and at-risk student populations. As the national school reform trend reduces time for science instruction in favor of reading across grades K-5, this research and development project, alternatively, is focused on accelerating both student science understanding and reading comprehension proficiency at the primary level (grades 1-2). The project is being implemented in diverse classrooms and addresses age-appropriate content from the areas of the physical, earth/environmental, and life sciences. The project is following a Cluster Randomized Trial (CRT) design with 16 experimental and 16 control schools and a total of 256 teachers/classrooms. Both groups are using the same District-adopted Reading/Language Arts program and are teaching the same District-adopted Science standards that are consistent with frameworks for state and national standards.

Developing Critical Evaluation as a Scientific Habit of Mind: Instructional Scaffolds for Secondary Earth and Space Sciences

This exploratory project develops and tests graphical scaffolds which facilitate high school students' coordination of connecting evidence with alternative explanations of particular phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry.

Lead Organization(s): 
Award Number: 
1316057
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This exploratory project develops and tests graphical scaffolds, called model-evidence link (MEL) activities, which facilitate high school students' coordination of connecting evidence with alternative explanations of particular Earth and space sciences phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry. The project's research questions are: (1) how does year-long instruction using MEL activities change high school students' critical evaluation abilities; (2) how does use of critical evaluation promote judgment reappraisals about Earth and space science topics with large plausibility gaps; and (3) to what extent does promotion of plausibility reappraisal lead to high school students' construction and reconstruction of scientifically accurate conceptions about fundamental concepts in Earth and space sciences? The project develops three MEL activities that focus on important topics in Earth and space sciences. The topics will be hydraulic fracturing, wetlands, and lunar origin. These MELs were selected because they align with major topical units in Earth and space science (i.e., geology, water resources, and astronomy, respectively).

The project develops effective instructional tools (the MEL activities to stimulate collaborative argumentation) designed to increase high school students' critical evaluation abilities that that are central for fully engaging in these scientific and engineering practices and constructing scientifically accurate understanding. Science topics require students to effectively evaluate connections with evidence and alternative explanations. The development of MEL activities that cover major Earth and space sciences topics will assist teachers in increasing their students' critical evaluation abilities. These tools are developed in geographically diverse settings, including one school district with a Hispanic majority, to gauge their effectiveness in helping all students. Furthermore, the design-based research methods employed in the proposed study are focused on developing tools that can be easily integrated into a variety of science curricula to supplement and reinforce scientific and engineering practices, rather than wholesale replacement. The ability to be critically evaluative is essential for developing a society that characteristically exhibits scientific habits of mind and is equipped to deal with future challenges in a way that is beneficial to our nation.

Promoting Students' Spatial Thinking in Upper Elementary Grades using Geographic Information Systems (GIS)

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316660
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The study incorporates the latest developments in the use of Geographic Information Systems (GIS) within the classroom. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation. Geography teachers in elementary schools are trained to use GIS software to create digital maps specific to the subject matter and projects on which their students work. Students then work in small collaborative groups and engage in open discussions designed to enhance the development and use of their spatial and multi-step causal reasoning.

GIS has been used in middle and high school settings. This project introduces GIS to upper elementary grades particularly to allow students an early opportunity to be involved in meaningful data and map-driven activities to promote their spatial skills. The proposal team predicts that the traditional gap between girls and boys in spatial skills will shrink with training thus will be strongly pronounced in the experimental relative to control groups. The project documents the effectiveness of instructional practices that are likely to enhance multistep reasoning, systems thinking, conceptual and spatial understanding, and motivation for learning while learning to work with maps to solve problems involving geography and ecological awareness. The project develops instructional methods that incorporate innovative tools for promoting problem solving to address real-life issues in this increasingly technology-driven era. The innovative tool is open-source and designed for professionals, but it can be modified to be child-friendly. Classroom activities are integrated with science and social studies curricula and content standards. Teachers are expected to find the curriculum attractive and easy to implement.

Pages

Subscribe to Earth/Environmental Science