Earth/Environmental Science

Youth Participatory Science to Address Urban Heavy Metal Contamination

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise.

Award Number: 
1720856
Funding Period: 
Mon, 05/15/2017 to Thu, 04/30/2020
Full Description: 

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project is a collaboration of teachers in the Chicago Public Schools, science educators, chemists, and environmental scientists from the University of Illinois at Chicago, Northwestern University, Loyola University, and members of the Chicago Environmental Justice Network. The project is significant because it leverages existing partnerships and builds on pilot projects which will be informed by a corresponding cycle of research on teachers' learning and practice. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise. The project will examine the malleable factors affecting the ability of teachers to engage underrepresented students in innovative urban citizen science projects with a focus on the synergistic learning that occurs as teachers, students, scientists, and community members work together on addressing complex socio-scientific issues.

The goal is to provide a network of intellectual and analytical support to high school chemistry teachers engaged in customizing curricula in response to urban environmental concerns. The project will use an annual summer institute where collaborators will develop curriculum and procedures for collecting soil and water samples. In the project, the teachers and students will work with university scientists to analyze these samples for heavy metals, and students will share their results in community settings. The study design will be multiple case and be used to study the content knowledge learned and mobilized by participating teachers as they develop these authentic projects. The project includes explicit focus on the professional development of high school science teachers while it also aims to create rich learning opportunities for underrepresented high school students in STEM fields. The contextualized science concepts within students' everyday experiences or socio-scientific issues will likely have a positive impact on student motivation and learning outcomes, but the experiences of urban students are less likely to be reflected by the curriculum, and the practices of effective secondary science teachers in these contexts are under-examined.

The following article is in press and will be available soon:

Morales-Doyle, D., Childress-Price, T., & Chappell, M. (in press). Chemicals are contaminants too: Teaching appreciation and critique of science in the era of NGSS. Science Education. https://doi.org/10.1002/sce.21546

High School Students' Climate Literacy Through Epistemology of Scientific Modeling (Collaborative Research: Forbes)

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1720838
Funding Period: 
Fri, 09/01/2017 to Fri, 12/31/2021
Full Description: 

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students. Scientists routinely use data-intensive, computer-based models to study complex natural phenomena, and modeling has become a core objective of current science curriculum standards. The project will provide new insights about student use of scientific models to understand natural phenomena, and advance knowledge about curriculum, instruction, and assessment practices that promote model-based reasoning among students.

This 4-year Design and Development project will examine use of a web-based climate modeling tool designed to provide non-scientists experiences with climate modeling in high school geoscience classrooms. A theoretically-grounded and empirically tested approach to design-based research, instructional design, and assessment development will be used in an iterative cycle of instructional innovation and education research to find answers to two research questions: 1) How do secondary students develop epistemic and conceptual knowledge about climate? And 2) How do secondary science teachers support student use of climate modeling application to develop epistemic and conceptual knowledge about climate? Data associated with conceptual and epistemic knowledge, curriculum-embedded modeling tasks, interviews, and videorecorded observations of instruction will be used to study impacts of the new curriculum module on 55 high school science teachers and 3,000 students. Project participants include students from low socioeconomic populations and other groups underrepresented in STEM fields. The curriculum will also serve as a resource for an existing, online professional development course at the American Museum of Natural History that engages teachers nationwide.

Learning in Places: Field Based Science in Early Childhood Education

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Lead Organization(s): 
Award Number: 
1720578
Funding Period: 
Sat, 07/01/2017 to Wed, 06/30/2021
Full Description: 

Recent evidence suggests that reasoning and making decisions about ecological systems is a cultural activity that impacts participation in the core scientific practices of observation, evidence use, and claims making. This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

Using design-based research, the project team will collaborate with teachers, parents of participating students, and community garden educators to collectively design and develop four key components: 1) field-based curricular units for K-3 classrooms; 2) a model of family and community engagement that strengthens cultural relevance and equity in field-based science learning; 3) a pilot program of teacher professional development that informs future scaling efforts; and 4) research that unpacks student learning and teacher instructional practices that support children?s complex ecological reasoning and the cultural contexts of such knowledge. Data sources will include video, interviews, surveys, and student-created artifacts. A mixed-methods approach will be used to produce research findings at multiple levels including: student learning about complex ecological phenomena and field-based practices; classroom-level learning and high-leverage teaching practices in model units at each grade level; impacts of co-design on professional learning and practice; and family and community organizations learning and engagement in field-based science education. The project will be carried out by a research-practice-community partnership in Seattle, Washington that includes learning scientists (University of Washington), K-3 teachers and school administrators (Seattle Public Schools), garden educators (Seattle Tilth), and parents of participating students. In total, eight schools, 32 teachers, 800 students, and 32 families are expected to participate.

High School Students' Climate Literacy Through Epistemology of Scientific Modeling (Collaborative Research: Chandler)

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1719872
Funding Period: 
Fri, 09/01/2017 to Fri, 12/31/2021
Full Description: 

This project will focus on learning about model based reasoning in science, and will develop, implement, study, and refine a 6-week climate science module for high school students. The module will feature use of a web-based climate modeling application, and the project team will collect and analyze evidence of model-based reasoning about climate phenomena among students. Scientists routinely use data-intensive, computer-based models to study complex natural phenomena, and modeling has become a core objective of current science curriculum standards. The project will provide new insights about student use of scientific models to understand natural phenomena, and advance knowledge about curriculum, instruction, and assessment practices that promote model-based reasoning among students.

This 4-year Design and Development project will examine use of a web-based climate modeling tool designed to provide non-scientists experiences with climate modeling in high school geoscience classrooms. A theoretically-grounded and empirically tested approach to design-based research, instructional design, and assessment development will be used in an iterative cycle of instructional innovation and education research to find answers to two research questions: 1) How do secondary students develop epistemic and conceptual knowledge about climate? And 2) How do secondary science teachers support student use of climate modeling application to develop epistemic and conceptual knowledge about climate? Data associated with conceptual and epistemic knowledge, curriculum-embedded modeling tasks, interviews, and videorecorded observations of instruction will be used to study impacts of the new curriculum module on 55 high school science teachers and 3,000 students. Project participants include students from low socioeconomic populations and other groups underrepresented in STEM fields. The curriculum will also serve as a resource for an existing, online professional development course at the American Museum of Natural History that engages teachers nationwide.

Zoom In! Learning Science with Data

This project will address the need for high quality evidence-based models, practices, and tools for high school teachers and the development of students' problem solving and analytical skills by leveraging novel research and design approaches using digital tools and two well-established online instructional platforms: Zoom In and Common Online Data Analysis Platform.            

Award Number: 
1621289
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

This project will expand the DRK-12 portfolio by contributing to a limited program portfolio on data science, and also by being responsive to a broader, national discourse on data science, exemplified in the data-dependent scientific practices emphasis in the Next Generation Science Standards (NGSS). With the impetus toward data literacy, an acute need has emerged for high quality evidence-based models, practices, and tools to better prepare high school teachers to teach data skills and for students to develop the problem solving and analytical skills needed to interpret and understand data, particularly in the sciences. This project will address these challenges by leveraging novel research and design approaches, using digital tools and two well-established online instructional platforms; Zoom In and Common Online Data Analysis Platform.

With a user base of over 27,000 teachers and students, the existing Zoom In platform has proven successful in fostering evidence-based inquiry among social studies teachers. This project will test the feasibility of the platform to facilitate data-focused inquiry and skill development among high school science teachers and their students. In Year 1, two NGSS-aligned digital curriculum modules and supporting materials focused on scientific phenomena and problems in biology and earth science will be developed for high school science teachers and embedded in a modified iteration of Zoom In. The Common Online Data Analysis Platform (CODAP) will be integrated into the modules to make hierarchical data structures, modeling, visualizations, and dynamic linking possible within Zoom In. A pilot and usability test will be conducted with 16 teachers and 100 students from diverse New York City public high schools. Two teacher focus groups and think-aloud sessions with the students will be held. In Year 2, the remaining four modules will be developed. Guided by four research questions, field testing with teachers and students will be done to assess the content, CODAP data tools, Zoom-in student supports, teacher supports, and outcome measures. In Year 3, final revisions to the tools will be completed. A small-scale efficacy test will be conducted to assess aspects of the implementation process, practices, and overall impact of the modules on student learning. For the efficacy study, a two-level cluster-randomized design will be employed to randomly assign schools to the Zoom In intervention. A comparison group will use another existing well-designed data literacy digital instructional platform but without key aspects of Zoom In. Outcome measures will be administered at the beginning and end of the school year to the treatment and comparison groups. Back-end data, observational data, and teacher log data will be collected and analyzed. Qualitative data will be gathered from teacher and student observations and interviews and analyzed. Researchers will analyze the impact on student learning using hierarchical linear models with an effect treatment condition and student-and-class-level covariates. The research findings will be broadly disseminated through the Zoom In platform, conferences, publications, and social media.


Project Videos

2019 STEM for All Video Showcase

Title: Zoom In! Learning Science with Data

Presenter(s): Megan Silander & Bill Tally


Geological Models for Explorations of Dynamic Earth (GEODE): Integrating the Power of Geodynamic Models in Middle School Earth Science Curriculum

This project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices.

Lead Organization(s): 
Award Number: 
1621176
Funding Period: 
Mon, 08/15/2016 to Fri, 07/31/2020
Full Description: 

This project will contribute to the Earth science education community's understanding of how engaging students with dynamic computer-based systems models supports their learning of complex Earth science concepts regarding Earth's surface phenomena and sub-surface processes. It will also extend the field's understandings of how students develop modeling practices and how models are used to support scientific endeavors. This research will shed light on the role uncertainty plays when students use models to develop scientific arguments with model-based evidence. The GEODE project will directly involve over 4,000 students and 22 teachers from diverse school systems serving students from families with a variety of socioeconomic, cultural, and racial backgrounds. These students will engage with important geoscience concepts that underlie some of the most critical socio-scientific challenges facing humanity at this time. The GEODE project research will also seek to understand how teachers' practices need to change in order to take advantage of these sophisticated geodynamic modeling tools. The materials generated through design and development will be made available for free to all future learners, teachers, and researchers beyond the participants outlined in the project.

The GEODE project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices. The GEODE software will permit students to "program" a series of geologic events into the model, gather evidence from the emergent phenomena that result from the model, revise the model, and use their models to explain the dynamic mechanisms related to plate motion and associated geologic phenomena such as sedimentation, volcanic eruptions, earthquakes, and deformation of strata. The project will also study the types of teacher practices necessary for supporting the use of dynamic computer models of complex phenomena and the use of curriculum that include an explicit focus on uncertainty-infused argumentation.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

Quality Urban Ecology Science Teaching for Diverse Learners

This project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL).  Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

Lead Organization(s): 
Award Number: 
1503519
Funding Period: 
Sat, 08/01/2015 to Tue, 07/31/2018
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This exploratory research project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL). Participants in the project will include students in grades 4-8 in a large urban school district, elementary school teachers, middle school science teachers, and middle school teachers of English language arts. Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

The project will develop two enhanced urban ecology modules (47 lessons) for English learners in grades 4-8; science language and literacy assessments for English language learners (ELLs); an ELL STEM career awareness inventory; an urban ecology for ELLs teacher knowledge scale, and an urban ecology for ELLs pedagogy observation protocol. The materials will be tested with a stratified random sample of students identified by achievement level (low, medium, and high) and linguistic background (mainstream, LTEL, and "at risk" of becoming LTEL). A mixed-methods research design will be used to test the hypothesis that the quantity and quality of LTEL science language and literacy achievement will increase as a result of teacher participation in implementing the newly developed transdisciplinary framework for Urban Ecology for English Learners.

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.


Project Videos

2019 STEM for All Video Showcase

Title: How Video Storytelling Reengages Teenagers in STEM Learning

Presenter(s): Leah Clapman & William Swift

2018 STEM for All Video Showcase

Title: PBS NewsHour's STEM SRL Transforms Classrooms into Newsrooms

Presenter(s): Leah Clapman & William Swift

2017 STEM for All Video Showcase

Title: PBS is Building the Next Generation of STEM Communicators

Presenter(s): Leah Clapman, John Fraser, Su-Jen Roberts, & Bill Swift


Pages

Subscribe to Earth/Environmental Science