Earth/Environmental Science

AutoMentor: Virtual Mentoring and Assessment in Computer Games for STEM Learning

This project is developing a system for producing automated professional mentoring while students play computer games based on STEM professions. The project explores a specific hypothesis about STEM mentoring: A sociocultural model as the basis of an automated tutoring system can provide a computational model of participation in a community of practice, which produces effective professional feedback from nonplayercharacters in a STEM learning game.

Award Number: 
0918409
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012

Cyber-enabled Earth Exploration: Development of Materials for Middle School Earth Science Instruction

This project is developing new instructional materials for middle school earth science classes that incorporate emerging cyber-enabled technologies such as Google Earth as a transformative data analysis tool. The materials emphasize the use of claims, evidence, and reasoning in the exploration of volcanoes, earthquakes, and plate tectonics, leading students through a process of discovery to help them build a deeper understanding of the driving forces and resulting manifestations of plate tectonics.

Lead Organization(s): 
Award Number: 
0918683
Funding Period: 
Sat, 08/01/2009 to Tue, 07/31/2012
Project Evaluator: 
Randy Knuth
Full Description: 

Cyber-Enabled Earth Exploration (CE3) is a research and development project aimed at motivating and challenging students in science, which has been identified as one of the reasons the U.S. lags behind other nations on an array of economic and educational indicators (National Center on Education and the Economy 2006). The project will develop new instructional materials for middle school science teachers that help create a compelling classroom culture of scientific discovery, engage students in the creative opportunities that abound in science, and inspire them to pursue the high school science coursework needed for future careers in science.

The materials will incorporate emerging and widely available technologies such as Google Earth to engage middle school students in exploring an essential science question, “Does the Earth’s structure affect you?”  The use of computer technologies has been shown to successfully motivate middle school students (Pelligrino 2000), and the use of an integrated Earth system science approach provides the knowledge base, methodologies, and global context to make science accessible, relevant and meaningful for middle school students.

A complete learning unit and teacher’s guide will be developed by a team of experts in K-12 curriculum design, geology, and geography, using a Learning-for-Use curriculum design framework.  The materials will be tested for ease-of-use and effectiveness in approximately ten classrooms across Montana, which include both large and small class sizes, urban and rural communities, and white and Native American students. Participating teachers will provide feedback to help guide revision of the materials, which will subsequently be disseminated to the national K-12 community.

The intellectual merits of CE3 include: (1) creation of an innovative, technology-rich curriculum that engages students and teachers in authentic scientific questions about essential Earth systems science concepts; (2) introduction of the use of Google Earth as a new and potentially transformative data analysis tool for teachers and students; and (3) strengthening of curriculum models that help students acquire skills in problem solving, information management, communication, the integration of quantitative and qualitative data, and critical and creative thinking skills.

The broader impacts include: (1) partnering among researchers and educators to develop, test, adapt, and disseminate new research-based approaches to science teaching, (2) participation of underserved rural and tribal schools in state-of-the-art educational practices, (3) development of next-generation instructional materials that will be made available to K-12 educators across the country, (4) dissemination of project results through several multidisciplinary conferences, and (5) geosciences learning materials that incorporate the societal implications of earth processes, which better prepare students to become engaged global citizens.

The Impact of Online Professional Development: An Experimental Study of Professional Development Modalities Linked to Curriculum

This project is designed to enhance understanding of how online professional development environments contribute to teach learning, changes in classroom practice and changes in student learning in comparison to face-to-face professional development. Using secondary school teachers learning to use a reformed-oriented environmental science curriculum, groups of teachers will be randomly assigned to one of three conditions: (1) traditional face-to-face workshop, (2)self-guided online professional development, or (3)online “short course” professional development guided by a facilitator.

Project Email: 
Lead Organization(s): 
Award Number: 
0455582
Funding Period: 
Fri, 07/01/2005 to Thu, 06/30/2011

Change Thinking for Global Science: Fostering and Evaluating Inquiry Thinking About the Ecological Impacts of Climate Change

This project draws from the expertise of a fully collaborative educator-scientist team to create learning progressions, curricular units and assessment instruments towards large scale research on the teaching and learning of climate change and impacts by 7-12th graders in primarily under-resourced schools. Products include eight week curricular units, IPCC-compliant simplified future scenarios, an online interface with guided predictive distribution modeling, and research results.

Project Email: 
Lead Organization(s): 
Award Number: 
0918590
Funding Period: 
Sat, 08/01/2009 to Wed, 07/31/2013
Project Evaluator: 
Dr. Amelia Gotwals
Full Description: 

Overview

It is increasingly important for all American students to become sophisticated thinkers of science. The Center for Essential Science at the University of Michigan is conducting educational research to engage and support complex thinkers of science and to improve science learning in high-poverty, urban, elementary and middle school classrooms, with particular focus on the Detroit Public Schools. Our previous work focused on fourth through sixth grades, a period when the performance of American science students falls significantly behind that of students in other countries. In this grant, we extend our learning progressions and associated curricular materials, visualization technologies and educational research from fourth to the tenth grade. In particular, this grant is focused in two areas:

  • the development and empirical evaluation of eight to twelve-week curricular units and associated technologies to promote students' deep understandings of the impact of climate change on ecosystems dynamics and animal interactions, and
  • the exploration of new ideas in educational assessment leading to tests that evaluate students' complex reasoning with science.

A Sense of Urgency on Learning Ecological Impacts of Global Climate Change

The modern world is experiencing substantial and rapid changes that are reshaping not only human societies but natural ecosystems worldwide. During the lifetimes of our current middle and high school students, it is likely that our planet will undergo more anthropogenic change than it has during all of human history to date.  While scientists from many disciplines are modeling, monitoring, predicting, and analyzing climate change, understanding the impacts and consequences of climate change cannot be left to scientists alone.

While scientists are aware of the sense of urgency to develop scientific understanding of the impacts of global climate changes, science education resources and sound research on students’ development of complex reasoning about ecological impacts of global climate change are scarce, despite recognition from scientists and policy makers of the importance of this topic. Several factors contribute to this absence. First, global climate change is an extremely multi-disciplinary domain that does not easily fit into existing K-12 disciplinary boundaries of earth science, life science, and physical science. The American Institute for Global Change Research defines global change as “the interactions of biological, chemical and physical processes that regulate changes in the function on the Earth system, including the particular ways in which these changes are influenced by human activities” (American Institute for Global Change Research, 2008). Second, scientific information associated with global climate change is relatively new and emergent, disallowing strong representation in science standards, high stakes tests, textbooks or curricular units utilized in classrooms. Our previous research suggests that the complexity of content coupled with almost no representation on high stakes tests leads to a low priority for many classroom teachers and consequently little to no classroom time. (S. Blum, personal communication 11.6.08). Third, global climate change is a dynamic topic that might be best addressed with resources that couple curricular activities which guide the development of complex inquiry reasoning and modeling/simulation resources to represent the dynamic nature of the science. While modeling and simulation resources exist for professional scientists (e.g., Lifemapper designed by proposal co-PI), neither the guided curricular activities nor the modeling and simulation resources are widely available for middle and high school audiences.

Together, a sense of urgency exists to build a solid, research-based foundation about a new and essential focus area within pre-college science education: students’ complex inquiry reasoning about the impact of global changes on ecosystem dynamics. This sense of urgency can be addressed through the combination of three research-based activities addressed in this proposal: (1) the extension of existing 4-6th grade curricular units towards the development and empirical evaluation of a 4-10th grade curricular progression focused on complex reasoning about biodiversity and the impact of global changes on populations of animals and ecosystem dynamics; (2) the development and evaluation of ecological simulation and modeling resources to accompany the middle and high school units; and (3) sound educational research to provide strong empirical evidence of both growth spurts and plateaus, as well as documentation of how and when complex inquiry reasoning occurs among middle and early high school students in these focus areas.

The program outlined will serve as the major research vehicle for research questions in several interrelated areas. We propose a research design with a series of quasi-experimental studies that will complement each other and provide multiple lenses for understanding complex questions such as these. Our research questions are:

1. Which scientific content and reasoning skills are essential for 7-10th graders’ complex reasoning and modeling of the ecological impacts of climate change? How are these manifested in content and inquiry reasoning progressions?

2. What dynamic visualization and modeling resources support the development of deep thinking about the ecological impacts of climate change?

3. What scaffolding and instructional activities support the development of deep thinking about the ecological impacts of climate change, including both content (ecological impacts) and complex reasoning components (science practices) of this knowledge, within cohorts of 7-10th graders in two new curricular units?

4. Utilizing quantitative (growth curve models, cross sectional studies) and qualitative (think aloud interviews) analyses, what learning outcomes and growth trajectories are realized by 7-10th intervention and control students as measured by both traditional standardized items and assessments focusing on complex thinking about ecological impacts of climate change?

We believe the greatest contribution of our work will be clear empirical information (growth spurts, growth plateaus and achievement information) associated with middle and high school students’ learning of complex and dynamic science associated with the ecological impacts of global climate change. We see the empirically driven development of learning progressions, curricular units, assessment instruments and professional development resources as important secondary contributions. The hypotheses we wish to test are the following:  Do Detroit, rural and small city students who work with coordinated scaffold-rich inquiry programs and visualization resources focusing on impacts of global climate change develop deep conceptual understandings as compared to matched cohorts students?  As determined by growth curve analyses, what do their learning trajectories look like? What new insights about the design of scaffold-rich curricular units and visualization technologies can be gleaned from an analysis of students’ growth trajectories and summative achievement results?  What kinds of assessment instruments are needed to provide reliable and valid measurement of learning progressions in these focus areas? What can we learn about the design of a series of multi-year, coordinated learning resources from the empirically driven development of learning progressions associated with an important emerging science, the ecological impacts of climate change? 

 

Learning Science as Inquiry with the Urban Advantage: Formal-Informal Collaborations to Increase Science Literacy and Student Learning

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

Award Number: 
0918560
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Learning Innovations at WestEd
Full Description: 

The American Museum of Natural History and Michigan State University propose a research and development project focused on DR-K12 challenge #2 and the hypothesis that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. The overarching questions that drive this project are: How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science? How are these resources then used, and to what extent and in what ways do they contribute to participants’ learning? How are those resources then used for student learning? Answering these questions will involve the use of existing and new resources, enhancement of existing relationships, and a commitment to systematically collect evidence. Urban Advantage (UA) is a middle school science initiative involving informal science education institutions that provides professional development for teachers and hands-on learning for students to learn how to conduct scientific investigations. This project will (1) refine the UA model by including opportunities to engage in field studies and the use of authentic data sets to investigate the zebra mussel invasion of the Hudson River ecosystem; (2) extend the resources available to help parents, administrators, and teachers understand the nature of scientific work; and (3) integrate a research agenda into UA. Teaching cases will serve as resources to help teachers, students, administrators, and families understand scientific inquiry through research on freshwater ecosystems, and—with that increased understanding—support student learning. Surveys, observations, and assessments will be used to document and understand the effects of professional development on teachers, students, administrators, and parents. The study will analyze longitudinal, multivariate data in order to identify associations between professional development opportunities for teachers, administrators, and parents, their use of resources to support their own learning and that of students, middle school teachers’ instructional practices, and measures of student learning.

Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development Program: Scaling for Effectiveness

This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).

Project Email: 
Lead Organization(s): 
Award Number: 
0918277
Funding Period: 
Tue, 09/01/2009 to Sun, 08/31/2014
Project Evaluator: 
McREL
Full Description: 

Ecosystems and Evidence Project (Collaborative Research: Berkowitz)

This exploratory research and development project addresses the question, "Can students develop an understanding of the ecological nature of science (ENOS) in high school biology and environmental science classes that is useful and productive in environmental citizenship?" To address this question, the project will identify the essential elements of ENOS, investigate how these can be taught and learned, and explore how ENOS skills and understandings are used to enhance environmental citizenship.

Award Number: 
0918610
Funding Period: 
Tue, 09/01/2009 to Fri, 08/31/2012
Project Evaluator: 
Jackie DeLisi, Education Development Center, Inc. (EDC)

High Adventure Science

The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0929774
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010

Fossil Finders: Using Fossils to Teach About Evolution, Inquiry and Nature of Science

This project engages children in classrooms across the country in an authentic investigation of Devonian fossils. Goals include supporting children in the use of evidence in constructing explanations of natural phenomena, and motivating culturally and linguistically diverse groups of children to engage in learning science. Deliverables include development and testing of an interactive website where children learn how to identify the fossils they find and add their own data to an emerging database.

Award Number: 
1249157
Funding Period: 
Tue, 01/01/2008 to Mon, 12/31/2012
Project Evaluator: 
Ohio Research and Evaluation Center

CLUSTER: Investigating a New Model Partnership for Teacher Preparation (Collaborative Research: Steinberg)

This project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. The study is designed to examine and document the effect of this integrated program on the production of urban science teachers. This study will also research the impact of internships in science centers on improving classroom science teaching in urban high schools.

Award Number: 
0554269
Funding Period: 
Sat, 04/01/2006 to Thu, 03/31/2011
Full Description: 

            CLUSTER (Collaboration for Leadership in Urban Science Teaching, Evaluation and Research) is an NSF-funded TPC project. Its partners are The City College of New York (CCNY), New York Hall of Science (NYHS), and City University of New York’s Center for Advanced Study in Education (CASE). It aims to develop and research a model designed to increase and improve the pool of secondary science teachers who reflect the ethnic distribution of city students and who are prepared to implement inquiry-based science instruction.

            CLUSTER Fellows are undergraduate science majors in New York City. They are recruited, trained, and certified to teach science in New York City middle and high schools. They participate both as students in the CCNY Teacher Education Program and as Explainers in the NYHS Science Career Ladder. Their experiences in class and at the NYHS are integrated and guided by a conceptual framework, which emphasizes science as an active process of discovery where ideas are developed and constructed through meaningful experience.

            CLUSTER aims to produce generalizable knowledge of interest to the field regarding the growth and development of perspective teachers in an experiential training program and to assess the impact and value of the CLUSTER model.

Pages

Subscribe to Earth/Environmental Science