Chemistry

Science, Technology, Engineering and Mathematics Scholars Teacher Academy Resident System

This project will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools with the goal of increasing teacher retention and diversity rates.

Lead Organization(s): 
Award Number: 
1621325
Funding Period: 
Fri, 07/15/2016 to Wed, 06/30/2021
Full Description: 

This project at Jackson State University will investigate the effectiveness of a teacher academy resident model to recruit, license, induct, employ, and retain middle school and secondary science and mathematics teachers for high-need schools in the South. It will prepare new, highly-qualified science and mathematics teachers from historically Black universities in high-needs urban and rural schools. The project involves a partnership among three historically Black universities (Jackson, State University, Xavier University of Louisiana, and the University of Arkansas at Pine Bluff), and diverse urban and rural school districts in Jackson, Mississippi; New Orleans, Louisiana; and Pine Bluff Arkansas region that serve more than 175,000 students.

Participants will include 150 middle and secondary school teacher residents who will gain clinical mentored experience and develop familiarity with local schools. The 150 teacher residents supported by the program to National Board certification will obtain: state licensure/certification in science teaching, a master's degree, and initiation. The goal is to increase teacher retention and diversity rates. The research question guiding this focus is: Will training STEM graduates have a significant effect on the quality of K-12 instruction, teacher efficacy and satisfaction, STEM teacher retention, and students? Science and mathematics achievement? A quasi-experimental design will be used to evaluate project's effectiveness.

Supporting Chemistry Teachers to Assess and Foster Chemical Thinking

The fundamental purpose of this project is to develop, implement, and study a professional development (PD) model for improving chemistry teachers' formative assessment practices to foster teaching focused on chemical thinking.

Award Number: 
1621228
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This is a design and development study submitted to the teaching strand of the Discovery Research PreK-12 (DRK-12) program; responsive to Program Solicitation NSF 15-592. The DRK-12 program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by PreK-12 students and teachers, through research and development of STEM education innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The fundamental purpose of this project is to develop, implement, and study a professional development (PD) model for improving chemistry teachers' formative assessment practices to foster teaching focused on chemical thinking. The PD model seeks to refocus and enhance teachers' abilities to notice, interpret, and respond to students' ideas. Building on previous exploratory work through which a Chemical Thinking Framework was developed, the proposed effort will work with 8th-12th grade teachers in Boston Public Schools and the New England Region to assist them (a) to recognize tools that are useful in eliciting students' chemical thinking, and adapt or design formative assessments; (b) to make sense of students' chemical thinking based on data collected using formative assessments that elicit students' thinking; and (c) to strategize responsive actions that better foster learning chemistry. The research questions will be: (1) How does chemistry teachers' assessment reasoning change through engagement in PD that focuses on formative assessment as a transformative lever?; and (2) How does engagement in the proposed PD activities influence the ideas and practices that teachers emphasize in their classrooms?

In order to address the research questions, the project will develop a yearlong PD model with four cohorts of 8th-12th grade teachers, including one cohort with teachers from the New England region in a hybrid format (face-to-face and online); each having six teachers (N=24). The model development will be conducted in three phases. In Phase 1, the research team will develop a detailed plan for the PD program by designing and testing conceptualized activities. During Phase 2, the project will study the model with Cohorts 1 and 2 teachers. Phase 3 will focus on positioning the model for scaling up purposes with Cohorts 3 and 4. This phase will test the resources developed, and make comparisons to assess the scalability of the model. Data gathering strategies will include: (a) focus groups to collect data on teachers' assessment reasoning while collectively analyzing students' written work and videos of assessment practice; (b) assessment portfolios to gather individual data on teacher assessment reasoning and practice; (c) assessment snapshots to capture individual teachers' interactions with students; and (d) follow-up sessions to observe and videotape teachers during the year. Data interpretation strategies will include: (a) analysis of domain-neutral factors to characterize changes in how teachers frame and approach assessment of student understanding; and (b) analysis of domain-dependent factors to characterize changes in teachers' attention to the disciplinary ideas of students' work according to the Chemical Thinking Framework. The project will include an external evaluator to address both formative and summative components of this process. The outcome of the proposed scope of work will be a research-informed and field-tested PD model focused on the use of formative assessment to improve chemistry teaching and learning.


Project Videos

2020 STEM for All Video Showcase

Title: Formative Assessment with a Bang!

Presenter(s): Robert Huie, Timothy Abell, Scott Balicki, Greg Banks, Michael Clinchot, Marianne Dunne, Rebecca Lewis, & Hannah Sevian


CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Tue, 05/31/2022
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

Ramping Up Accessibility in STEM: Inclusively Designed Simulations for Diverse Learners

This project brings together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1503439
Funding Period: 
Wed, 07/15/2015 to Fri, 06/30/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

This project will bring together leaders in simulation design and accessibility to develop and study interactive science simulations for diverse middle school students including those with sensory, mobility, or learning disabilities. The resulting simulations and research findings will help to address the significant disparity that exists between the achievement in science by students with and without disabilities. The Physics Education Technology (PhET) Interactive Simulations project (University of Colorado Boulder) will develop and research interactive science and math simulations used by teachers and students around the world. The Inclusive Design Research Centre (OCAD University, Toronto, Ontario) is an international leader in inclusively designed technology, with the goal of designing for the full range of human diversity including those with and without disabilities. Together, the project team will engage in an iterative design process to develop innovative solutions for making the highly interactive environment of an educational simulation simultaneously intuitive, accessible, and supportive of exploration and discovery practices in science. Development efforts will focus on three inclusive simulations and optimize the design and implementation of several inclusive simulation features, including keyboard navigation, auditory descriptions for screen readers, the use of non-speech sounds to provide feedback (sonification), and the ability to control the simulation with assistive technology (AT) devices. For each simulation, professional development materials for teachers, including classroom activities and user guides, will be developed to support teachers in effectively using the inclusively designed simulations in their classrooms. 

Through new research, this project will seek to understand: 1) how inclusive simulations can support students with disabilities to engage in science practices, 2) how students with and without disabilities utilize inclusive simulations for learning STEM content, and 3) how students can engage in collaborative learning between students with and without disabilities - with an inclusive simulation. Researchers will use individual interviews with diverse students to closely examine these questions. The resulting resources, models, and tools will provide exemplars and important building blocks for an inclusively designed interactive curriculum, educational games, and assessment tools. Resulting simulations, research findings, design guidelines, and exemplars will be disseminated through the project team and advisor partner networks, education resource websites, and educator professional organizations.

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.


Project Videos

2019 STEM for All Video Showcase

Title: How Video Storytelling Reengages Teenagers in STEM Learning

Presenter(s): Leah Clapman & William Swift

2018 STEM for All Video Showcase

Title: PBS NewsHour's STEM SRL Transforms Classrooms into Newsrooms

Presenter(s): Leah Clapman & William Swift

2017 STEM for All Video Showcase

Title: PBS is Building the Next Generation of STEM Communicators

Presenter(s): Leah Clapman, John Fraser, Su-Jen Roberts, & Bill Swift


Developing Teachers' Capacity to Promote Argumentation in Secondary Science

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. 

Award Number: 
1503511
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. The program includes strategies for organizing science activities to create contexts where students have something to argue about and teaching practices that promote sustained, productive argumentation among students. Results will document what aspects of these new practices teachers find easier and more difficult to implement, and how challenges are influenced by the urban schooling contexts in which project teachers work. The project will also further our understanding of how site-based professional development can be structured to support teacher learning and improvement.

The project is a longitudinal study of a cohort of 30 secondary science teachers from an urban school district in California. The professional development (PD) program will be organized around intensive summer institutes followed by 2 school-based lesson study cycles each year, facilitated by trained coaches. The PD work will be carried out over three years. All PD sessions will be recorded for interaction analysis to identify variations in coaching and teacher participation and the influences of such variation on teacher learning. Repeated measures of teachers' conceptions of argumentation will be given over 3 years as a measure of teacher learning. An observation protocol will be developed and used to measure teacher talk and its change over time. A sub-sample of teachers' classrooms will be video recorded to produce a longitudinal record for interaction analyses to link teacher talk to patterns of student argumentation. The third year of the project will add measures of student learning and link them to variations in teacher practice. The final year of the project will produce retrospective analyses that link pathways in teacher learning to features of the PD program and teachers' participation. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-Rich Investigations for NGSS Teaching (SPRINT)

This is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning.

Lead Organization(s): 
Award Number: 
1503153
Funding Period: 
Mon, 06/01/2015 to Wed, 05/31/2017
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.


Project Videos

2019 STEM for All Video Showcase

Title: Immersed in Phenomena: Helping Teachers Transition to NGSS

Presenter(s): Julie Yu, Sara Heredia, & Jessica Parker


GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Designing Assessments in Physical Science Across Three Dimensions (Collaborative Research: Harris)

This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).

Lead Organization(s): 
Award Number: 
1903103
Funding Period: 
Sun, 09/01/2013 to Sun, 06/30/2019
Full Description: 

This is a collaborative proposal among the University of Illinois at Chicago, Michigan State University, and SRI International to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012). The study focuses on the development of new measures of learning that take into account the interdependence of science content and practice. Two disciplinary core ideas--Matter and its Interactions, and Energy--and two scientific and engineering practices--Constructing Explanations and Designing Solutions, and Developing and Using Models--are used for this purpose.

The research questions are: (1) What are the characteristic features of science assessments based upon systematic application of the Evidence-Centered Design (ECD) assessment process?; (2) To what extent can assessment designs incorporate critical core idea, crosscutting concept and science/engineering practice dimensions in ways that both separate and integrate these dimensions as part of the design architecture?; (3) What is the evidence that the multiple dimensions of science learning (e.g., content, practices and crosscutting concepts) are separable and recoverable in the performance of students who respond to these assessments?; (4) How instructionally sensitive are these assessments? (i.e., Do they show differential and appropriate sensitivity to students' opportunity to learn science in ways consistent with the vision contained in the NRC Framework?); (5) What forms of evidence can be provided for the validity of these assessments using a multifaceted validity framework that takes into account both the interpretive and evidentiary components of a validity argument for these new assessments?; (6) What are the characteristics of assessments that best serve the needs of classroom teachers relative to a formative assessment process and in what ways do such assessments and scoring processes need to be designed to support effective teacher implementation?; and (7) What are the unique affordances and opportunities provided by technology in designing and implementing assessments focused on merging content & practices performance expectations?

Assessments are iteratively designed and administered in three school districts and a laboratory school in Florida and one school district in Wisconsin using the "Investigating and Questioning our World through Science and Technology" curriculum. The three school districts in Florida have classrooms that are using typical curriculum. The assessments will also be administered and tested with students in these classrooms. To address the research questions, the project conducts five major tasks: (1) development of assessment items using the ECD process to document and guide coherence of items; (2) an alignment study to review design patterns and task templates; (3) a cognitive analysis study to empirically investigate the extent to which the items elicit the intended guidelines; (4) three empirical studies, including (a) an early-stage testing with teachers (n=6) and students (n=180) in Year 1, (b) a pilot testing in Year 2 with teachers (n=12) and students (n=360), and (c) a main study in Year 3 with teachers (n=30) and students (n=900); and (5) a study to investigate the formative use of the assessment items using teacher focus groups' feedback and analysis of student performance data from previous studies.

Project outcomes are: (a) research-informed and field-tested assessment prototypes that measure students' thinking around the two physical science core ideas and the two scientific and engineering practices; (b) relevant data and procedures used in the studies; and (c) a framework for the formative use of the assessments, including guidelines, scoring rubrics, and criteria for assessment design decisions.

This project was previously funded under award #1316903.

Climate Change Narrative Game Education (CHANGE)

This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1316782
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science. The goal of this project is to develop a place-based futuristic gaming simulation model that can easily extend to the other locales in other states, based on local climate change effects, local stakeholders, local economic and social effects to motivate the high school students in that area. CHANGE uses: (a) scientifically realistic text narratives about future Florida residents (text stories with local Florida characters, many years in the future based on GCC), (b) local, place-based approach grounded in west-central Florida Gulf Coast using scientific data, (c) a focus on the built environment, (d) simulations & games based on scientific data to help students learn principles of GCC so students can experience and try to cope with the potential long term effect of GCC via role-play and science-based simulation, and (e) a web-based eBook narrative where sections of narrative text alternate with simulations/computer games. The proposed project will work with 25 high school Marine Science teachers in 25 schools in Hillsborough County, Florida. The project delivers new research for instructional technologists and serious game developers regarding effective interface and usability design of intermedia narrative gaming-simulations for education.

This project employs and researches innovative models for delivering high school GCC education. GCC is a complex topic involving numerous factors and uncertainties making teaching this extremely important topic very difficult. The pioneering techniques proposed for this project will advance science education of GCC. It also will deliver new research for instructional technologists and serious game developers regarding effective interface and usability design of intermedia narrative gaming-simulations for education. Effective education is probably the most crucial part in our ability to cope with climate change. CHANGE will educate underserved low SES and minority high school students in Hillsborough County, and later elsewhere, with a model making GCC personally relevant to them.

Pages

Subscribe to Chemistry