Software

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Gagnon)

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

Award Number: 
1907384
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.

Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.

InquirySpace 2: Broadening Access to Integrated Science Practices

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics. InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research and learn what it means to be a scientist.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1621301
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

This project will create technology-enhanced classroom activities and resources that increase student learning of science practices in high school biology, chemistry, and physics courses. The project addresses the urgent national priority to improve science education as envisioned in the Next Generation Science Standards (NGSS) by focusing less on learning facts and equations and instead providing students with the time, skills, and resources to experience the conduct of science and what it means to be a scientist. This project builds on prior work that created a sequence of physics activities that significantly improved students' abilities to undertake data-based experiments and led to productive independent investigations. The goal of the InquirySpace project is to improve this physics sequence, extend the approach to biology and chemistry, and adapt the materials to the needs of diverse students by integrating tailored formative feedback in real time. The result will be student and teacher materials that any school can use to allow students to experience the excitement and essence of scientific investigations as an integral part of science instruction. The project plans to create and iteratively revise learning materials and technologies, and will be tested in 48 diverse classroom settings. The educational impact of the project's approach will be compared with that of business-as-usual approaches used by teachers to investigate to what extent it empowers students to undertake self-directed experiments. To facilitate the widest possible use of the project, a complete set of materials, software, teacher professional development resources, and curriculum design documents will be available online at the project website, an online teacher professional development course, and teacher community sites. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

InquirySpace will incorporate several innovative technological and pedagogical features that will enable students to undertake scientific experimentation that closely mirrors current science research. These features will include (1) educational games to teach data analysis and interpretation skills needed in the approach, (2) reduced dependence on reading and writing through the use of screencast instructions and reports, (3) increased reliance on graphical analysis that can make equations unnecessary, and (4) extensive use of formative feedback generated from student logs. The project uses an overarching framework called Parameter Space Reasoning (PSR) to scaffold students through a type of experimentation applicable to a very large class of experiments. PSR involves an integrated set of science practices related to a question that can be answered with a series of data collection runs for different values of independent variables. Data can be collected from sensors attached to the computer, analysis of videos, scientific databases, or computational models. A variety of visual analytic tools will be provided to reveal patterns in the graphs. Research will be conducted in three phases: design and development of technology-enhanced learning materials through design-based research, estimation of educational impact using a quasi-experimental design, and feasibility testing across diverse classroom settings. The project will use two analytical algorithms to diagnose students' learning of data analysis and interpretation practices so that teachers and students can modify their actions based on formative feedback in real time. These algorithms use computationally optimized calculations to model the growth of student thinking and investigation patterns and provide actionable information to teachers and students almost instantly. Because formative feedback can improve instruction in any field, this is a major development that has wide potential.

Proportions Playground: A Dynamic World to Support Teachers' Proportional Reasoning

This project focuses on the creation of the initial functionality for a dynamic microworld, Proportions Playground, designed to support teachers in developing a coherent understanding of proportional reasoning. The Proportions Playground project seeks to both develop a unique pilot software application for the iPad and explore how it supports teachers in developing a coherent, robust definition of proportions.

Award Number: 
1621290
Funding Period: 
Thu, 09/01/2016 to Thu, 02/28/2019
Full Description: 

Proportions are a critical topic in mathematics that is simultaneously complicated and over-simplified in typical instruction. Current research undertaken by the research team suggests that the over-simplification is related to limitations in teachers' understandings of proportional relationships. Presenting proportions in a dynamic environment offers teachers the opportunity to create key developmental understandings related to this area of mathematics. This project focuses on the creation of the initial functionality for a dynamic microworld, Proportions Playground, designed to support teachers in developing a coherent understanding of proportional reasoning. Proportions Playground is conceptualized as a tool for supporting the development of coherent understandings by allowing teachers to interact in concrete ways with otherwise abstract ideas and by allowing teachers easy access to dynamic objects and other representations. It is meant to address the significant limitations for reasoning about the relationships between measurable aspects of two objects as well as in manipulating those relationships. Building from work currently underway, Proportions Playground will explore key areas in which there are opportunities for engaging teachers in the development of a coherent and robust understanding of proportional reasoning that extends beyond the typical "3 given, 1 unknown" proportion problem. This approach attempts to engage teachers in an array of dynamic, visually-rich sets of tasks designed to challenge teachers' preconceptions of proportions and to strengthen their connections between proportions and related areas of mathematics. This project is funded by the Discovery Research PreK-12 (DRK-12) and EHR Core Research (ECR) Programs. the DRK-12 program supports research and development on STEM education innovations and approaches to teaching, learning, and assessment. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.

The Proportions Playground project seeks to both develop a unique pilot software application for the iPad and explore how it supports teachers in developing a coherent, robust definition of proportions. The software will be designed to support either numeric manipulation (e.g., graphing software) or geometric constructions (e.g., dynamic geometry software). Specifically, for this project the mathematics of interest will include the relationships between similarity and proportion and the nature of covariation. The research will focus on how teachers are developing a robust and coherent understanding of proportions and how the dynamic environment promotes such understandings. Working with six teacher advisors, the project will develop three task sets. Using teaching experiments and individual interviews, results will be used to refine the task sets. The revised task sets will be piloted with 40 teachers. Data will be collected on participants' thinking and any changes seen in the knowledge resources they are using. The researchers will be looking for factors that seem to impact teachers' thinking as well as evidence to support or deny the assertion that the Proportions Playground activities engage teachers in (a) different ways of reasoning about proportions and (b) support them in drawing from a wide array of resources so that coherence may be developed were the teachers to have a prolonged engagement with the tools. The project will rely on Epistemic Network Analysis to identify the connections between knowledge resources.

Geological Models for Explorations of Dynamic Earth (GEODE): Integrating the Power of Geodynamic Models in Middle School Earth Science Curriculum

This project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices.

Lead Organization(s): 
Award Number: 
1621176
Funding Period: 
Mon, 08/15/2016 to Fri, 07/31/2020
Full Description: 

This project will contribute to the Earth science education community's understanding of how engaging students with dynamic computer-based systems models supports their learning of complex Earth science concepts regarding Earth's surface phenomena and sub-surface processes. It will also extend the field's understandings of how students develop modeling practices and how models are used to support scientific endeavors. This research will shed light on the role uncertainty plays when students use models to develop scientific arguments with model-based evidence. The GEODE project will directly involve over 4,000 students and 22 teachers from diverse school systems serving students from families with a variety of socioeconomic, cultural, and racial backgrounds. These students will engage with important geoscience concepts that underlie some of the most critical socio-scientific challenges facing humanity at this time. The GEODE project research will also seek to understand how teachers' practices need to change in order to take advantage of these sophisticated geodynamic modeling tools. The materials generated through design and development will be made available for free to all future learners, teachers, and researchers beyond the participants outlined in the project.

The GEODE project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices. The GEODE software will permit students to "program" a series of geologic events into the model, gather evidence from the emergent phenomena that result from the model, revise the model, and use their models to explain the dynamic mechanisms related to plate motion and associated geologic phenomena such as sedimentation, volcanic eruptions, earthquakes, and deformation of strata. The project will also study the types of teacher practices necessary for supporting the use of dynamic computer models of complex phenomena and the use of curriculum that include an explicit focus on uncertainty-infused argumentation.

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Teachers Extending Their Knowledge in Online Collaborative Learning Environments: Opportunities and Challenges

STEM Categorization: 
Day: 
Fri

Join two projects to discuss the challenges and opportunities afforded through online environments for providing professional development and supporting classroom implementation of mathematical practices.

Date/Time: 
9:15 am to 10:45 am
Session Materials: 

Teams of researchers from Drexel University, Rutgers University, University of Missouri, and the Math Forum have been investigating online environments for math education and math teacher professional learning communities. The Virtual Math Teams project has developed a synchronous, multi-user GeoGebra implementation and studies the learning of small groups as well as the preparation of teachers to facilitate this learning.

Session Types: 

Supports for Elementary Teachers Implementing the NGSS: Challenges and Opportunities across Science, Technology, and Engineering

STEM Categorization: 
Day: 
Fri

Consider methods and challenges associated with supporting upper elementary teachers’ implementation of NGSS-based classroom interventions in this structured poster session.

Date/Time: 
9:15 am to 10:45 am
Session Materials: 

In this structured poster session, a set of projects will present and discuss resources, models, and tools (RMTs) designed to support upper elementary teachers to implement an array of curricular and instructional interventions reflecting diverse disciplinary concepts and practices embodied in NGSS. The session aims to provide a forum for exploring diverse approaches to improving science in 3rd-5th-grade classrooms and engage in discussion about how these ideas can advance systemic efforts to support quality science instruction and student learning. 

Session Types: 

Leveraging Open Source Tools across NSF-funded Projects: Partnerships, Integration Models, and Developer Communities

STEM Categorization: 
Day: 
Fri

Discuss the potential utility of CODAP and other open source tools in your work, effective cross-project partnerships, and supporting developer communities around open source materials.

Date/Time: 
9:15 am to 10:45 am
Session Materials: 

Goal: Participants will explore the spectrum of “working together” from collaboration to community. Alongside participant examples, CODAP will be used as a model to explore the range of possibilities.

Objectives: That participants

Session Types: 

Scientific Modeling across the K–12 Continuum: Alignment between Theoretical Foundations and Classroom Interventions

STEM Categorization: 
Day: 
Thu

Explore methods and challenges associated with supporting and evaluating scientific modeling in K–12 classrooms in this structured poster session.

Date/Time: 
2:15 pm to 3:45 pm
Session Materials: 

In this interactive panel symposium, presenters will draw from a set of active DR K-12 projects to explore a diverse array of resources, models, and tools (RMTs) designed to operationalize varying perspectives on scientific modeling in elementary, middle, and secondary classrooms across disciplinary domains.

Session Types: 

Perspectives on Solution Diversity and Divergent Thinking in K–12 Engineering Design Learning Experiences

STEM Categorization: 
Day: 
Thu

Consider multiple approaches to valuing, supporting, and studying the diversity of students’ solutions to design problems through poster presentations and small-group discussion.

Date/Time: 
9:30 am to 11:00 am
Session Materials: 

“Solution diversity” has been proposed as one key characteristic that distinguishes engineering design from other disciplinary pursuits. Engineering designers recognize that for any design problem, there will be multiple acceptable solutions, and informed designers have been found to strive for “idea fluency” through divergent thinking techniques that assist them in exploring the design space (Crismond & Adams, 2012).

Session Types: 

Pages

Subscribe to Software