Social and Emotional Learning

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Researching the Efficacy of the Science and Literacy Academy Model (Collaborative Research: Strang)

This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.

Award Number: 
1223021
Funding Period: 
Wed, 08/01/2012 to Sun, 07/31/2016
Full Description: 

This award is doing a research study of three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. Model 1 is a one-week institute based on classroom discourse practices and a 2-week practicum (cohort 1). Model 2 is the one-week institute (cohort 2). Model 3 is a "business as usual" model (cohort 3) based on normal professional development provided by the school district. Cohorts 1 and 2 experience the interventions in year 1 with four follow-up sessions in each of years 2 and 3. In year 4 they receive no PD, but are being observed to see if they sustain the practices learned. Cohort 3 receives no treatment in years 1 and 2, but participates in a revised version of the institute plus practicum in year 3 with four follow up sessions in year 4. The Lawrence Hall of Science provides the professional development, and Stanford University personnel are conducting the research. The teachers come from the Oakland Unified School District. Science content is the GEMS Ocean Sciences Sequence.

There are 3 research questions;

1. In what ways do practicum-based professional development models influence science instructional practice?

2. What differences in student outcomes are associated with teachers' participation in the different PD programs?

3. Is the impact of the revised PD model different from the impact of the original model?

This is a designed-based research model. Teacher data is based on interviews on beliefs about teaching and the analysis of video tapes of their practicum and classroom performance using the Discourse in Inquiry Science Classrooms instrument. Student data is based on the GEMS unit pre- and post-tests and the California Science Test for 5th graders. Multiple analyses are being conducted using different combinations of the data from 8 scales across 4 years.

There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos. These will be presented in publications and conference presentations and be posted on linked websites at the Lawrence Hall of Science and the Center to Support Excellence in Teaching at Stanford University.

Cluster Randomized Trial of the Efficacy of Early Childhood Science Education for Low-Income Children

The research goal of this project is to evaluate whether an early childhood science education program, implemented in low-income preschool settings produces measurable impacts for children, teachers, and parents. The study is determining the efficacy of the program on Science curriculum in two models, one in which teachers participate in professional development activities (the intervention), and another in which teachers receive the curriculum and teachers' guide but no professional development (the control).

Project Email: 
Award Number: 
1119327
Funding Period: 
Mon, 08/15/2011 to Mon, 07/31/2017
Project Evaluator: 
Brian Dates, Southwest Counseling Services
Full Description: 

The research goal of this project is to evaluate whether an early childhood science education program, Head Start on Science, implemented in low-income preschool settings (Head Start) produces measurable impacts for children, teachers, and parents. The study is being conducted in eight Head Start programs in Michigan, involving 72 classrooms, 144 teachers, and 576 students and their parents. Partners include Michigan State University, Grand Valley State University, and the 8 Head Start programs. Southwest Counseling Solutions is the external evaluator.

The study is determining the efficacy of the Head Start on Science curriculum in two models, one in which 72 teachers participate in professional development activities (the intervention), and another in which 72 teachers receive the curriculum and teachers' guide but no professional development (the control). The teacher study is a multi-site cluster randomized trial (MSCRT) with the classroom being the unit of randomization. Four time points over two years permit analysis through multilevel latent growth curve models. For teachers, measurement instruments include Attitudes Toward Science (ATS survey), the Head Start on Science Observation Protocol, the Preschool Classroom Science Materials/Equipment Checklist, the Preschool Science Classroom Activities Checklist, and the Classroom Assessment Scoring System (CLASS). For students, measures include the "mouse house problem," Knowledge of Biological Properties, the physics of falling objects, the Peabody Picture Vocabulary Test-Fourth Edition, the Expressive Vocabulary Test-2, the Test of Early Mathematics Ability-3, Social Skills Improvement System-Rating Scales, and the Emotion Regulation Checklist. Measures for parents include the Attitudes Toward Science survey, and the Community and Home Activities Related to Science and Technology for Preschool Children (CHARTS/PS). There are Spanish versions of many of these instruments which can be used as needed. The external evaluation is monitoring the project progress toward its objectives and the processes of the research study.

This project meets a critical need for early childhood science education. Research has shown that very young children can achieve significant learning in science. The curriculum Head Start on Science has been carefully designed for 3-5 year old children and is one of only a few science programs for this audience with a national reach. This study intends to provide a sound basis for early childhood science education by demonstrating the efficacy of this important curriculum in the context of a professional development model for teachers.

Multiple Instrumental Case Studies of Inclusive STEM-Focused High Schools: Opportunity Structures for Preparation and Inspiration (OSPrl)

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.

Lead Organization(s): 
Award Number: 
1118851
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. In contrast to highly selective STEM-focused schools that target students who are already identified as gifted and talented in STEM, inclusive STEM-focused high schools aim to develop new sources of STEM talent, particularly among underrepresented minority students, to improve workforce development and prepare STEM professionals. A new NRC report, Successful K-12 STEM Education (2011), identifies areas in which research on STEM-focused schools is most needed. The NRC report points out the importance of providing opportunities for groups that are underrepresented in the sciences, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. This project responds specifically to the call for research in the NRC report and provides systematic data to define and clarify the nature of such schools. 

The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study. The first phase of the study is focusing on 12 well-established and carefully planned schools with good reputations and strong community and business support, in order to capture the critical components as intended and implemented. Case studies of these high-functioning schools and a cross-case analysis using a set of instruments for gauging STEM design and implementation are contributing toward building a theory of action for such schools that can be applied more generally to STEM education. The second phase of the study involves selecting four school models for further study, focusing on student-level experiences and comparing student outcomes against comprehensive schools in the same district. Research questions being studied include: 1) Is there a core set of likely critical components shared by well-established, promising inclusive STEM-focused high schools? Do other components emerge from the study? 2) How are the critical components implemented in each school? 3) What are the contextual affordances and constraints that influence schools' designs, their implementation, and student outcomes? 4) How do student STEM outcomes in these schools compare with school district and state averages? 5) How do four promising such schools compare with matched comprehensive high schools within their respective school districts, and how are the critical components displayed? 6) From the points of view of students underrepresented in STEM fields, how do education experiences at the schools and their matched counterparts compare? And 7) How do student outcomes compare?

The research uses a multiple instrumental case study design in order to describe and compare similar phenomena. Schools as critical cases are being selected through a nomination process by experts, followed by screening and categorization according to key design dimensions. Data sources include school documents and public database information; a survey, followed by telephone interviews that probe for elaborated information, to provide a systematic overview of the candidate components; on-site visitations to each school provide data on classroom observations at the schools; interviews with students, teachers and administrators in focus groups; and discussions with critical members of the school community that provide unique opportunities to learn such as mentors, business leaders, and members of higher education community that provide outside of school learning experiences. The project is also gathering data on a variety of school-level student outcome indicators, and is tracking the likely STEM course trajectories for students, graduation rates, and college admission rates for students in the inclusive STEM-focused schools, as compared to other schools in the same jurisdiction. Analysis of the first phase of the study aims to develop rich descriptions that showcase characteristics of the schools, using axial and open coding, to determine a theory of action that illustrates interconnections among context, design, implementation, and outcome elements. Analysis of the second phase of the study involves similar processes on four levels: school, student, databases, and a synthesis of the three. Evaluation of the project consists of an internal advisory board and an external advisory board, both of which provide primarily formative feedback on research procedures.

Research findings, as well as case studies, records of instrument and rubric development and use, annual reports, and conference proposals and papers are being provided on a website, in order to provide an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. An effort is also being made to give voice to the experiences of high school students from the four pairs of high schools studied in the second phase of the study. Findings are also being disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations.

Continuous Learning and Automated Scoring in Science (CLASS)

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.

Award Number: 
1119670
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items (i.e., short essays, science narratives, concept mapping, graphing problems, and virtual experiments) into the "Web-based Inquiry Science Environment" (WISE) program. WISE is an online science-inquiry curricula that supports deep understanding through visualization of processes not directly observable, virtual experiments, graphing results, collaboration, and response to prompts for explanations. In partnership with Educational Testing Services (ETS), project goals are: (1) to develop five automated inquiry assessment activities that capture students' abilities to integrate their ideas and form coherent scientific arguments; (2) to customize WISE by incorporating automated scores; (3) to investigate how students' systematic feedback based on these scores improve their learning outcomes; and (4) to design professional development resources to help teachers use scores to improve classroom instruction, and administrators to make better informed decisions about teacher professional development and inquiry instruction. The project targets general science (life, physical, and earth) in three northern California school districts, five middle schools serving over 4,000 6th-8th grade students with diverse cultural and linguistic backgrounds, and 29 science teachers. It contributes to increase opportunities for students to improve their science achievement, and for teachers and administrators to make efficient, evidence-based decisions about high-quality teaching and learning.

A key research question guides this effort: How automated scoring of inquiry assessments can increase success for diverse students, improve teachers' instructional practices, and inform administrators' decisions about professional development, inquiry instruction, and assessment? To develop science inquiry assessment activities, scoring written responses include semantic, syntax, and structure of meaning analyses, as well as calibration of human-scored items with a computer-scoring system through the c-rater--an ETS-developed cyber learning technology. Validity studies are conducted to compare automated scores with human-scored items, teacher, district, and state scores, including sensitivity to the diverse student population. To customize the WISE curriculum, the project modifies 12 existing units and develops nine new modules. To design adaptive feedback to students, comparative studies explore options for adaptive guidance and test alternatives based on automated scores employing linear models to compare student performance across randomly assigned guidance conditions; controlling for covariates, such as prior science scores, gender, and language; and grouping comparison studies. To design teacher professional development, synthesis reports on auto-scored data are created to enable them to use evidence to guide curricular decisions, and comments' analysis to improve feedback quality. Workshops, classroom observations, and interviews are conducted to measure longitudinal teachers' change over time. To empower administrators' decision making, special data reports, using-evidence activities, individual interviews, and observation of administrators' meetings are conducted. An advisory board charged with project evaluation addresses both formative and summative aspects.

A research-informed model to improve science teaching and learning at the middle school level through cyber-enabled assessment is the main outcome of this effort. A total of 21 new, one- to three-week duration standards-based science units, each with four or more automatically scored items, serve as prototypes to improve students' performance, teachers' instructional approaches, and administrators' school policies and practices.

Professional Development for Culturally Relevant Teaching and Learning in Pre-K Mathematics

This project is creating and studying a professional development model to support preK teachers in developing culturally and developmentally appropriate practices in counting and early number. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses counting and basic number operations with the intention of exploring the domain as it connects to children's experiences in their homes and communities.

Award Number: 
1019431
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2018
Project Evaluator: 
Victoria Jacobs
Full Description: 

Developers and researchers at the University of Wisconsin are creating and studying a professional development model that connects research in counting and early number (CGI), early childhood, and funds of knowledge. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses a specific, circumscribed content domain - counting and basic number operations - with the intention of exploring the domain in depth particularly as it connects to children's experiences in their homes and communities and how it is learned and taught through play.

The project designs, develops, and tests innovative resources and models for teachers to support ongoing professional learning communities. These learning communities are designed to identify and build on the rich mathematical understandings of all pre-K children. The project's specific goals are to instantiate a reciprocal "funds of knowledge" framework for (a) accessing children's out-of-school experiences in order to provide instruction that is equitable and culturally relevant and (b) developing culturally effective ways to support families in understanding how to mathematize their children's out-of-school activities. Teachers are observed weekly during the development and evaluation process and student assessments are used to measure students' progress toward meeting project benchmarks and the program's effectiveness in reducing or eliminating the achievement gap.

The outcome is a complete professional development model that includes written and digital materials. The product includes case studies, classroom video, examples of student work, and strategies for responding to students' understandings.

Pages

Subscribe to Social and Emotional Learning