Informal Educators

PBS NewsHour STEM Student Reporting Labs: Broad Expansion of Youth Journalism to Support Increased STEM Literacy Among Underserved Student Populations and Their Communities

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.

Award Number: 
1503315
Funding Period: 
Sat, 08/01/2015 to Wed, 07/31/2019
Full Description: 

The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.


Project Videos

2019 STEM for All Video Showcase

Title: How Video Storytelling Reengages Teenagers in STEM Learning

Presenter(s): Leah Clapman & William Swift

2018 STEM for All Video Showcase

Title: PBS NewsHour's STEM SRL Transforms Classrooms into Newsrooms

Presenter(s): Leah Clapman & William Swift

2017 STEM for All Video Showcase

Title: PBS is Building the Next Generation of STEM Communicators

Presenter(s): Leah Clapman, John Fraser, Su-Jen Roberts, & Bill Swift


Tools for Teaching and Learning Engineering Practices: Pathways Towards Productive Identity Work in Engineering

Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering). 

Lead Organization(s): 
Award Number: 
1502755
Funding Period: 
Fri, 05/01/2015 to Sat, 04/30/2022
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. Identifying with engineering is critical to help students pursue engineering careers. This project responds to this persistent large-scale problem. The I-Engineering framework and tools address both the learning problem (supporting students in learning engineering design) and the identity problem (supporting students in recognizing that they belong in engineering). I-Engineering will support identity development as a part of learning two core practices in engineering: 1) defining problems and 2) designing solutions. In particular, the I-Engineering framework and tools will help middle grades teachers and students engage in the engineering design process using meaningful, authentic and often youth-driven contexts. The project will ground this work in two engineering design challenges: 1) safe and green commutes and 2) portable energy, both of which exemplify engineering for sustainable communities. The objectives are to: 1) To develop research-based understandings of how to support identity development among middle school students from underrepresented backgrounds in the context of learning engineering. 2) To develop and refine a framework and tools (I-Engineering) in support of student learning and identity development in engineering with a focus on sustainability. 3) To collaborate with grades 6 and 7 teachers to implement and refine I-Engineering for classroom use. 4) To study whether the I-Engineering framework/tools support identity development in engineering among middle school students from underrepresented backgrounds. 

The project draws upon design-based implementation research to develop and test the I-Engineering framework and tools among students and teachers in grades 6 and 7. Using social practice theory, how aspects of the learning environment shape identity development will be identified, yielding information on the impact of the instructional tools generated. The research questions are grounded in two areas: supporting identity development in engineering, understanding how students progress in their engineering development and patterns across implementation of the I-Engineering resources. Studies will shed light on mechanisms that support identity development in engineering, how that might be scaffolded, and how such scaffolds can transport across context. The mixed-method student- and classroom-level studies will allow for empirical claims regarding how and under what conditions youth from underrepresented backgrounds may progress in their identity development in engineering. The research plan includes student case studies drawing on task-based interviews, observations and student work and classroom studies using observations, student and teacher interviews, an engineering identity survey, student work and formative assessments of engineering practices. I-Engineering will reach over 500 students and their teachers in schools that serve predominantly underrepresented populations. The project team will disseminate the findings, framework and tools in support of teaching engineering practices, and promoting understanding of the importance of identity development in broadening participation.

Fostering STEM Trajectories: Bridging ECE Research, Practice, and Policy

This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM.  A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417878
Funding Period: 
Mon, 06/15/2015 to Tue, 05/31/2016
Full Description: 

Early childhood education is at the forefront of the minds of parents, teachers, policymakers as well as the general public. A strong early childhood foundation is critical for lifelong learning. The National Science Foundation has made a number of early childhood grants in science, technology, engineering and mathematics (STEM) over the years and the knowledge generated from this work has benefitted researchers. Early childhood teachers and administrators, however, have little awareness of this knowledge since there is little research that is translated and disseminated into practice, according to the National Research Council. In addition, policies for both STEM and early childhood education has shifted in the last decade. 

The Joan Ganz Cooney Center and the New America Foundation are working together to highlight early childhood STEM education initiatives. Specifically, the PIs will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. The papers will be used as anchor topics to organize a forum with a broad range of stakeholders including policymakers as well as early childhood researchers and practitioners. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report. The synthesis report will be widely disseminated by the Joan Ganz Cooney Center and the New America Foundation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed project.

Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418270
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

Developing and Testing the Internship-inator, a Virtual Internship in STEM Authorware System

The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

Award Number: 
1418288
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Ensuring that students have the opportunities to experience STEM as it is conducted by scientists, mathematicians and engineers is a complex task within the current school context. This project will expand access for middle and high school students to virtual internships, by enabling STEM content developers to design and customize virtual internships. The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. The researchers in this project will work with a core development network to develop and refine the authorware, constructing up to a hundred new virtual internships and a user group of more than 70 STEM content developers. The researchers will iteratively analyze the performance of the authorware, focusing on optimizing the utility and the feasibility of the system to support virtual internship development. They will also examine the ways in which the virtual internships are implemented in the classroom to determine the quality of the STEM internship design and influence on student learning.

The Intership-inator builds on over ten years of NSF support for the development of Syntern, a platform for deploying virtual internships that has been used in middle schools, high schools, informal science programs, and undergraduate education. In the current project, the researchers will recruit two waves of STEM content developers to expand their current core development network. A design research perspective will be used to examine the ways in which the developers interact with the components of the authorware and to document the influence of the virtual internships on student learning. The researchers will use a quantitative ethnographic approach to integrate qualitative data from surveys and interviews with the developers with their quantitative interactions with the authorware and with student use and products from pilot and field tests of the virtual internships. Data-mining and learning analytics will be used in combination with hierarchical linear modeling, regression techniques and propensity score matching to structure the quasi-experimental research design. The authorware and the multiple virtual internships will provide researchers, developers, and teachers a rich learning environment in which to explore and support students' learning of important college and career readiness content and disciplinary practices. The findings of the use of the authorware will inform STEM education about the important design characteristics for authorware that supports the work of STEM content and curriculum developers.

Changing Culture in Robotics Classroom (Collaborative Research: Shoop)

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1418199
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources. This project builds upon a ten year collaboration between Carnegie Mellon's Robotics Academy and the University of Pittsburgh's Learning Research and Development Center that studied how teachers implement robotics education in their classrooms and developed curricula that led to significant learning gains. This project will address the following three questions:

1.What kinds of resources are useful for motivating and preparing teachers to teach computational thinking and for students to learn computational thinking?

2.Where do teachers struggle most in teaching computational thinking principles and what kinds of supports are needed to address these weaknesses?

3.Can virtual environments be used to significantly increase access to computational thinking principles?

The project will augment traditional robotics classrooms and competitions with Robot Virtual World (RVW) that will scaffold student access to higher-order problems. These virtual robots look just like real-world robots and will be programmed using identical tools but have zero mechanical error. Because dealing with sensor, mechanical, and actuator error adds significant noise to the feedback students' receive when programming traditional robots (thus decreasing the learning of computational principles), the use of virtual robots will increase the learning of robot planning tasks which increases learning of computational thinking principles. The use of RVW will allow the development of new Model-Eliciting Activities using new virtual robotics challenges that reward creativity, abstraction, algorithms, and higher level programming concepts to solve them. New curriculum will be developed for the advanced concepts to be incorporated into existing curriculum materials. The curriculum and learning strategies will be implemented in the classroom following teacher professional development focusing on computational thinking principles. The opportunities for incorporating computationally thinking principles in the RVW challenges will be assessed using detailed task analyses. Additionally regression analyses of log-files will be done to determine where students have difficulties. Observations of classrooms, surveys of students and teachers, and think-alouds will be used to assess the effectiveness of the curricula in addition to pre-and post- tests to determine student learning outcomes.

Continuous Learning and Automated Scoring in Science (CLASS)

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.

Award Number: 
1119670
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items (i.e., short essays, science narratives, concept mapping, graphing problems, and virtual experiments) into the "Web-based Inquiry Science Environment" (WISE) program. WISE is an online science-inquiry curricula that supports deep understanding through visualization of processes not directly observable, virtual experiments, graphing results, collaboration, and response to prompts for explanations. In partnership with Educational Testing Services (ETS), project goals are: (1) to develop five automated inquiry assessment activities that capture students' abilities to integrate their ideas and form coherent scientific arguments; (2) to customize WISE by incorporating automated scores; (3) to investigate how students' systematic feedback based on these scores improve their learning outcomes; and (4) to design professional development resources to help teachers use scores to improve classroom instruction, and administrators to make better informed decisions about teacher professional development and inquiry instruction. The project targets general science (life, physical, and earth) in three northern California school districts, five middle schools serving over 4,000 6th-8th grade students with diverse cultural and linguistic backgrounds, and 29 science teachers. It contributes to increase opportunities for students to improve their science achievement, and for teachers and administrators to make efficient, evidence-based decisions about high-quality teaching and learning.

A key research question guides this effort: How automated scoring of inquiry assessments can increase success for diverse students, improve teachers' instructional practices, and inform administrators' decisions about professional development, inquiry instruction, and assessment? To develop science inquiry assessment activities, scoring written responses include semantic, syntax, and structure of meaning analyses, as well as calibration of human-scored items with a computer-scoring system through the c-rater--an ETS-developed cyber learning technology. Validity studies are conducted to compare automated scores with human-scored items, teacher, district, and state scores, including sensitivity to the diverse student population. To customize the WISE curriculum, the project modifies 12 existing units and develops nine new modules. To design adaptive feedback to students, comparative studies explore options for adaptive guidance and test alternatives based on automated scores employing linear models to compare student performance across randomly assigned guidance conditions; controlling for covariates, such as prior science scores, gender, and language; and grouping comparison studies. To design teacher professional development, synthesis reports on auto-scored data are created to enable them to use evidence to guide curricular decisions, and comments' analysis to improve feedback quality. Workshops, classroom observations, and interviews are conducted to measure longitudinal teachers' change over time. To empower administrators' decision making, special data reports, using-evidence activities, individual interviews, and observation of administrators' meetings are conducted. An advisory board charged with project evaluation addresses both formative and summative aspects.

A research-informed model to improve science teaching and learning at the middle school level through cyber-enabled assessment is the main outcome of this effort. A total of 21 new, one- to three-week duration standards-based science units, each with four or more automatically scored items, serve as prototypes to improve students' performance, teachers' instructional approaches, and administrators' school policies and practices.

Integrating Engineering and Literacy

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

Lead Organization(s): 
Award Number: 
1020243
Funding Period: 
Wed, 09/01/2010 to Wed, 05/31/2017
Full Description: 

The Integrating Engineering and Literacy (IEL) project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The project research and development team at Tufts University is working with pre-service teachers to design and test the curriculum modules for students and the teacher professional development model. Then the program is tested and refined in work with 100 in-service teachers and their students in a diverse set of Massachusetts schools. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students. The driving questions behind this proposed research are: (1) How do teachers' engineering (and STEM) content knowledge, pedagogical content knowledge, and perceptions or attitudes toward engineering influence their classroom teaching of engineering through literacy? (2) Do teachers create their own personal conceptions of the engineering design process, and what do these conceptions look like? (3) What engineering/reading thinking skills are students developing by participating in engineering activities integrated into their reading and writing work? The curriculum materials and teacher professional development model are being produced by a design research strategy that uses cycles of develop/test/refine work. The effects of the program are being evaluated by a variety of measures of student and teacher learning and practice. The project will contribute materials and research findings to the ultimate goal of understanding how to provide elementary school students with meaningful opportunities to learn engineering and develop valuable problem solving and thinking skills.

Integrating Computing Across the Curriculum (ICAC): Incorporating Technology into STEM Education Using XO Laptops

This project builds and tests applications tied to the school curriculum that integrate the sciences with mathematics, computational thinking, reading and writing in elementary schools. The investigative core of the project is to determine how to best integrate computing across the curriculum in such a way as to support STEM learning and lead more urban children to STEM career paths.

Project Email: 
Award Number: 
1404467
Funding Period: 
Sat, 08/01/2009 to Sun, 07/31/2011
Project Evaluator: 
Leslie Cooksy - Univ. of Delaware
Full Description: 

Computer access has opened an exciting new dimension for STEM education; however, if computers in the classroom are to realize their full potential as a tool for advancing STEM education, methods must be developed to allow them to serve as a bridge across the STEM disciplines. The goal of this 60-month multi-method, multi-disciplinary ICAC project is to develop and test a program to increase the number of students in the STEM pipeline by providing teachers and students with curricular training and skills to enhance STEM education in elementary schools. ICAC will be implemented in an urban and predominantly African American school system, since these schools traditionally lag behind in filling the STEM pipeline. Specifically, ICAC will increase computer proficiency (e.g., general usage and programming), science, and mathematics skills of teachers and 4th and 5th grade students, and inform parents about the opportunities available in STEM-centered careers for their children.

The Specific Aims of ICAC are to:

SA1. Conduct a formative assessment with teachers to determine the optimal intervention to ensure productive school, principal, teacher, and student participation.

SA2. Implement a structured intervention aimed at (1) teachers, (2) students, and (3) families that will enhance the students’ understanding of STEM fundamentals by incorporating laptops into an inquiry-based educational process.

SA3. Assess the effects of ICAC on:

a. Student STEM  engagement and performance.

b. Teacher and student computing specific confidence and utilization.

c. Student interest in technology and STEM careers.

d. Parents’ attitudes toward STEM careers and use of computers.

To enable us to complete the specific aims noted above, we have conducted a variety of project activities in Years 1-3. These include:

  1. Classroom observations at the two Year 1 pilot schools
  2. Project scaling to 6 schools in Year 2 and 10 schools in Year 3
  3. Semi-structured school administrator interviews in schools
  4. Professional development sessions for teachers
  5. Drafting of curriculum modules to be used in summer teacher institutes and for dissemination
  6. In-class demonstration of curriculum modules
  7. Scratch festivals each May
  8. Summer teacher institutes
  9. Student summer camps
  10. Surveying of teachers in summer institutes
  11. Surveying of teachers and students at the beginning and end of the school year
  12. Showcase event at end of student workshops

The specific ICAC activities for Years 2-5 include:

  • Professional development sessions (twice monthly for teachers), to integrate the ‘best practices’ from the program.
  • Working groups led by a grade-specific lead teacher. The lead teacher for each grade in each school will identify areas where assistance is needed and will gather the grade-specific cohort of teachers at their school once every two weeks for a meeting to discuss the progress made in addition to challenges to or successes in curricula development.  
  • ICAC staff and prior trained teachers will visit each class monthly during the year to assist the teachers and to evaluate specific challenges and opportunities for the use of XOs in that classroom.  
  • In class sessions at least once per month (most likely more often given feedback from Teacher Summer Institutes) to demonstrate lesson plans and assist teachers as they implement lesson plans.
  • ICAC staff will also hold a joint meeting of administrators of all target schools each year to assess program progress and challenges. 
  • Teacher Summer Institutes – scaled-up to teachers from the new schools each summer to provide training in how to incorporate computing into their curriculum.
  • Administrator sessions during the Teacher Summer Institutes; designed to provide insight into how the laptops can facilitate the education and comprehension of their students in all areas of the curriculum, discuss flexible models for physical classroom organization to facilitate student learning, and discussions related to how to optimize the use of computing to enhance STEM curricula in their schools.  Student Summer Computing Camps – designed to teach students computing concepts, make computing fun, and enhance their interest in STEM careers.  
  • ICAC will sponsor a yearly showcase event in Years 2-5 that provides opportunities for parents to learn more about technology skills their children are learning (e.g., career options in STEM areas, overview of ICAC, and summary of student projects). At this event, a yearly citywide competition among students also will be held that is an expanded version of the weeklong showcase event during the student summer camps.
  • Surveying of students twice a year in intervention schools.
  • Surveying of teachers at Summer Institutes and then at the end of the academic year.
  • Coding and entry of survey data; coding of interview and observational data.
  • Data analysis to examine the specific aims (SA) noted above:
    • The impact of ICAC on teacher computing confidence and utilization (SA 3.b).
    • Assess the effects of (1) teacher XO training on student computing confidence and utilization (SA 3.b), (2) training on changes in interest in STEM careers (SA 3.c), and (3) XO training on student engagement (SA 3.a).
    • A quasi-experimental comparison of intervention and non-intervention schools to assess intervention effects on student achievement (SA 3.a).
    • Survey of parents attending the yearly ICAC showcase to assess effects on parental attitudes toward STEM careers and computing (SA 3.d).

The proposed research has the potential for broad impact by leveraging technology in BCS to influence over 8,000 students in the Birmingham area. By targeting 4th and 5th grade students, we expect to impact STEM engagement and preparedness of students before they move into a critical educational and career decision-making process. Further, by bolstering student computer and STEM knowledge, ICAC will impart highly marketable skills that prepare them for the 81% of new jobs that are projected to be in computing and engineering in coming years (as predicted by the US Bureau of Labor Statistics).3 Through its formative and summative assessment, ICAC will offer intellectual merit by providing teachers throughout the US with insights into how computers can be used to integrate the elementary STEM curriculum. ICAC will develop a model for using computers to enhance STEM education across the curriculum while instilling a culture among BCS schools where computing is viewed as a tool for learning.

(Previously listed under Award # 0918216)

Pages

Subscribe to Informal Educators