This project seeks to advance knowledge in K-12 STEM education and assessment practices by building capacity for Assessment for Learning, improving assessments and teacher preparation courses, and providing models for pre-service teacher preparation through enhanced teaching modules. Three goals are: (1) faculty from three centers form a learning community, (2) recruit 5 STEM research scholars to conduct research on measurement and evaluation, and (3) expose pre-service teachers to assessment models in their coursework.
Projects
Mississippi State University is identifying characteristics of exemplary African American elementary science teachers and examining the role of mentoring on beginning elementary science teachers and their students.
This project addresses two grand challenges—cutting-edge STEM content and K-12 science assessments. Using DNA Sequencing Analysis Program (DSAP), which will be modified, high school students and teachers will learn molecular biology and modern genetics by working with authentic genomic sequences, and submit their findings for review by scientists. The objective is to develop state-of-the-art Web-based tools and resources that will make it possible for high school students to conduct authentic research in bioinformatics.
Beyond Penguins and Polar Bears, an online professional development magazine for elementary teachers, focuses on preparing teachers to teach science concepts in an already congested curriculum by integrating inquiry-based science with literacy teaching. Launched in March 2008, each thematic issue relates elementary science topics and concepts to the real-world context of the polar regions and includes standards-based science and content-rich literacy learning.
This project is comparing and evaluating different models for the delivery of online professional development aimed at elementary science teachers. The focus is on asynchronous (anytime, anywhere) and minimally facilitated models, because these approaches hold promise for reaching large numbers of teachers in a cost-effective way. The research capitalizes on experiences with BCM's award-winning, high traffic website for educators, BioEd Online.
This project aims to develop a software diagnostic tool for integrating diagnostic interviews, group administered assessments, and student data in real-time so that teachers can enter and view student status information. This project would concentrate on rational number learning in grades 3-8. The design is based on a model of learning trajectories developed from existing research studies.
This project aims to (1) determine ways in which Evidence-Centered Design enhances the quality of large-scale, technology-based science assessments for middle school grades and high school equivalency; (2) implement resulting procedures in operational test development; (3) evaluate the efficiency, effectiveness and generalizability of these procedures, and (4) disseminate findings to the assessment community.
Using an experimental design, this project examines the effects of online professional development courses on high school biology teachers' content and pedagogical knowledge, and on their students' knowledge. The project is testing the impact of using digital resouces and is using hierarchal linear modeling techniques to analyze data. It will contribute to the knowledge base of what impacts student achievement by testing the efficacy of online professional development for science teachers.
This project is creating five video-case modules for use in professional development of middle school mathematics teachers. The materials are designed to develop teachers' understanding of mathematics knowledge for teaching similarity. In total, 18-24 video cases will be produced, which, taken together, form the curriculum of a 45- to 60-hour professional development course.
This project forms communities of practice among K-6 teachers using Web-based resources that allow audio and video connections in real time (http://justaskateacher.com) and conducts research that examines the impact of these communities of practice on school programs, teaching practices, and student achievement. We invite K-6 teachers and teacher educators to join us at http://justaskateacher.com.
This project employs sensing technologies to help transform students' physical actions during play into a set of symbolic (computer) representations in a physics simulation and to engage the children in a developmentally appropriate and powerful form of scientific modeling. The students are in grades K–1 at UCLA's elementary school, and the intervention is based on the existing content unit on Force and Motion.
This project examines the nature of adaptive expertise in mathematics education, exploring relationships between this concept from cognitive psychology and effective middle school mathematics instruction. One goal of the project is to operationalize adaptive expertise in mathematics classroom using three dimensions: cognitive models of professional competence, instructional practices, and professional learning. Then, researchers seek to determine whether teachers who are more effective at raising student achievement are more or less adaptive.
This project aims to (1) investigate whether or not it is possible to successfully scale-up and adapt the Capacity Building Systems Model used in the Gadsden Mathematics Initiative and improve mathematics achievement for all students in a larger school district, and (2) replicate success in broadening the participation of underrepresented groups in entering STEM field by closing the achievement gap and raising the achievement level of underrepresented students in mathematics.
In response to the critical need for scholars with deep content knowledge in chemistry and the specialized training to conduct CER, this capacity building project prepares scholars whose research marries expertise in instrument design with extensive literature on chemistry misconceptions, resulting in the development of concept inventories as reliable and valid measures of student learning for use by chemistry teachers (both high school and post-secondary) and chemistry education researchers.
This study is aimed at exploring the components and impact of a teacher professional development model on teacher performance and student achievement and motivation in STEM disciplines at schools serving large numbers of minority students. It also aims to research and evaluate the impact of teachers who provide students with school experiences that are geared toward fostering high academic achievement.
This project addresses middle school students’ learning of science through the improvement of their inquiry science skills. The main goal is to develop a rigorous, technology-based assessment system for standards-aligned assessment of inquiry skills in six physical science content areas (i.e., Properties of Matter; Elements, Compounds, and Mixtures; Motion of Objects; Forms of Energy; and Heat Energy). Assessments are aligned with the Massachusetts Curricular Framework and National Science Education Standards.
The PuM project develops and conducts research on a learning continuum for seamless instruction in middle school physical science and high school physics. The ultimate goal is to use physics as the context to develop mathematics literacy, particularly with students from underrepresented populations and special needs students. The research component analyzes the effects of the curriculum on students' learning while simultaneously investigating teachers' pedagogical content knowledge in a variety of forms.
This project is developing and testing digital versions of science materials for middle school and high school. Project partners are creating guidelines for universally designed materials; building an open-source authoring tool (Inquiry Science System,ISS) that enables transformation of science curricula into digitally supported versions incorporating UDL features; using the ISS to produce exemplars of units from tested instructional materials, and evaluating the benefits of these exemplars for students with and without learning disabilities.
This project is implementing a program of professional development for teachers and web interface that links scientists with urban classrooms. Scientist mentors work with students and teachers through the web to carry out an original "authentic" inquiry project in plant science. The classroom intervention involves high school biology students working in assigned teams to generate their own research questions in plant science centered on core biology concepts from the National Science Education Standards.
This project researches the use of cyberinfrastructure to implement a strategy for using online telescopes as a laboratory to engage middle and high school students in cutting edge science research while providing them with significant new opportunities to apply STEM concepts, practice inquiry, and design and learn about the nature of scientific discovery.
This project augmenting the traditional professional development model with an online professional development platform—the Active Physics Teacher Community—that provides just-in-time support for teachers as they are enacting targeted units of the Active Physics curriculum. Teachers are helped in preparing lessons by providing them with formal instruction related to the lessons they are teaching in the classroom. In addition, teachers can participate in a moderated forum where they can share experiences.
This project has two goals:
1) to discover methods that can efficiently obtain information about the effects of high school programs on eventual college success. Methods we are considering include obtaining transcripts from post-secondary institutions, surveying high school graduates, and obtaining information from the National Student Clearinghouse.
2) to explore how students who studied Contemporary Mathematics in Context (Core Plus) or the Integrated Mathematics Program (IMP) fare in post secondary institutions.
This project partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which the project is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery.
SPRINTT uses an innovative, live, online training format to train hundreds of teachers in how to teach life, Earth, and physical science content in a polar context. Polar scientists directly inform the content and participate in the training. SPRINTT provides teachers with existing and adapted, high-quality, standards-based curriculum materials and collaborates with science and education partners to simplify research data and create a user-friendly interface from which students perform their own authentic polar research projects.
This project develops mixed-initiative dialog and speech recognition technologies to encourage students to speak and reason about science concepts. It is part of a larger collaboration to help fourth and fifth grade students who are not achieving their potential in high quality inquiry-based programs. The larger collaboration develops and evaluates a computer program, MyST, to interactively engage students in spoken tutorial dialogs of four science investigations to reinforce and extend their understanding of science concepts.