This project investigated the professional development needed to make teachers comfortable teaching with multi-user simulations and communications that students use every day. The enactment with OpenSim (an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics) also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with all selected cyber-enabled cognitive tools framed by constructivism, such as GoogleEarth and Biologica.
Projects
The Data Games project has developed software and curriculum materials in which data generated by students playing computer games form the raw material for mathematics classroom activities. Students play a short video game, analyze the game data, develop improved strategies, and test their strategies in another round of the game.
This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.
This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.
This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.
This project will design and develop a new K-12 classroom observation protocol for integrated STEM instruction (STEM-OP). The STEM-OP will inform the instruction of integrated STEM in many contexts with the goal of improving integrated STEM education.
This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.
This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.
This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.
The project will establish a sustained community of practice for high school teachers skilled in the VisChem Approach and a group of new teaching and research scholars with expertise in building conceptual understanding through the effective use of visualization. The project will help students move from describing phenomena to explaining their causes from a molecular-level perspectives (e.g., carbon dioxide in climate change, DNA changes in genetically modified organisms).
This project explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities.
This project explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities.
One significant challenge facing elementary STEM education is the varied preparation of English-language learners. The project addresses this with an innovative use of engineering curriculum to build on the English-language learners' prior experiences. The project will support teachers' learning about strategies for teaching English-language learners and using engineering design tasks as learning opportunities for mathematics, science and communication skills.
This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.
Mathematical Opportunities in Student Thinking (MOSTs) are high-leverage instances of student mathematical thinking that emerge in whole-class discussions. The challenge for teachers is to build on these opportunities to help the whole class understand the mathematics underlying these student contributions. To help teachers learn how to build on MOSTs, there is a need for professional development resources and tools that facilitators can use. There is also a need for research about how teachers use what they learn in professional development in their teaching. This project is developing a teacher learning sequence that will support teachers in learning to productively use student thinking that surfaces in-the-moment during their instruction—that is, in learning to build on MOSTs.
Mathematical Opportunities in Student Thinking (MOSTs) are high-leverage instances of student mathematical thinking that emerge in whole-class discussions. The challenge for teachers is to build on these opportunities to help the whole class understand the mathematics underlying these student contributions. To help teachers learn how to build on MOSTs, there is a need for professional development resources and tools that facilitators can use. There is also a need for research about how teachers use what they learn in professional development in their teaching. This project is developing a teacher learning sequence that will support teachers in learning to productively use student thinking that surfaces in-the-moment during their instruction—that is, in learning to build on MOSTs.
This project is developing a model for integrating best practices in technology-supported instructional design and formative assessment for genetics instruction in upper elementary, middle and high school. Using the Web-based Inquiry Science Environment platform, the project is developing school curriculum that scaffold and model scientific practices, enable students to interface with real-world problems, provide opportunities for students to make connections between visible phenomena and underlying genetic processes, and promote student monitoring and reflection on learning.
This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).
The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.
The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.
The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.
Providing computer science (CS) education to students prior to high school is critical for catalyzing their interest in CS and closing achievement and development gaps. However, the retention rate for underrepresented group participants in middle school CS teacher preparation programs is lower than that for their peers. The resulting lack of diversity in CS teachers contributes to students’ inequitable access to quality middle school CS education. In this project will investigate effective design and implementation strategies of CS teacher preparation programs aimed to increase the number of middle school CS teachers from underrepresented groups.
This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.
This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.
Artificial intelligence (AI) is transforming numerous industries and catalyzing scientific discoveries and engineering innovations. To prepare for an AI-ready workforce, young people must be introduced to core AI concepts and practices early to develop fundamental understandings and productive attitudes. Neural networks, a key approach in AI development, have been introduced to secondary students using various approaches. However, more work is needed to address the interpretability of neural networks and human-machine collaboration in the development process. This exploratory project will develop and test a digital learning tool for secondary students to learn how to interpret neural networks and collaborate with the algorithm to improve AI systems. The learning tool will allow students to interact with complex concepts visually and dynamically. It will also leverage students’ knowledge and intuition of natural languages by contextualizing neural networks in natural language processing systems.