Projects

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

10/15/2024

Progress in science is motivated and directed by uncertainties. Yet even though uncertainty is a crucial fulcrum for scientific thought, school students are taught science within an overarching assumption that scientific knowledge is certain. This project explores the intellectual leverage of enabling middle school students to experience how scientific work grapples with uncertainty. The overall goal of this project is to understand how teachers can create equitable learning environments for culturally and linguistically diverse learners using Student Uncertainty for Productive Struggle as a pedagogical model in middle school science classrooms.

10/01/2024

Professional learning communities (PLCs) are one common model for teachers to collaborate and learn from one another. The goal of this study is to understand how teachers' expertise is positioned in a PLC and the larger system of the school and district to inform mathematics teaching and learning. This should help schools and districts understand the features of PLCs that are important for supporting teachers as they collaborate and learn.

10/01/2024

Providing computer science (CS) education to students prior to high school is critical for catalyzing their interest in CS and closing achievement and development gaps. However, the retention rate for underrepresented group participants in middle school CS teacher preparation programs is lower than that for their peers. The resulting lack of diversity in CS teachers contributes to students’ inequitable access to quality middle school CS education. In this project will investigate effective design and implementation strategies of CS teacher preparation programs aimed to increase the number of middle school CS teachers from underrepresented groups.

09/01/2024

Navigating complex societal issues such as water shortages, forest fires, and other phenomena-based problems requires understanding the social, technological, and scientific dimensions surrounding the issues and they ways these dimensions interact, shift, and change. Despite its importance, however, developing students’ socioscientific literacy has received limited attention in elementary science teaching and learning contexts. This project begins to address this problem of practice by focusing first on developing elementary teachers’ socioscientific literacy and their capacity to integrate socioscientific issues and local phenomena in their science teaching practice.

09/01/2024

Artificial intelligence (AI) is transforming numerous industries and catalyzing scientific discoveries and engineering innovations. To prepare for an AI-ready workforce, young people must be introduced to core AI concepts and practices early to develop fundamental understandings and productive attitudes. Neural networks, a key approach in AI development, have been introduced to secondary students using various approaches. However, more work is needed to address the interpretability of neural networks and human-machine collaboration in the development process. This exploratory project will develop and test a digital learning tool for secondary students to learn how to interpret neural networks and collaborate with the algorithm to improve AI systems. The learning tool will allow students to interact with complex concepts visually and dynamically. It will also leverage students’ knowledge and intuition of natural languages by contextualizing neural networks in natural language processing systems.

09/01/2024

Despite the importance of addressing climate change, existing K-12 curricula struggle to make the urgency of the situation personally relevant to students. This project seeks to address this challenge in climate change education by making the abstract, global, and seemingly intractable problem of climate change concrete, local, and actionable for young people. The goal of this project is to develop and test actLocal, an online platform for K–12 teachers, students, and the public to easily create localized climate change adaptation simulations for any location in the contiguous United States. These simulations will enable high school students and others to implement and evaluate strategies to address the impacts of climate change in their own communities.

09/01/2024

This project will support a conference series, including an in-person gathering and virtual follow-up meetings, that will bring together teachers, researchers, education leaders, and instructional material designers to build a shared understanding of how to integrate the use of high-quality instructional materials with the benefits of localizing these materials to better address students’ contexts and backgrounds. By fostering dialogue, sharing models, and setting priorities for future research and design, the project seeks to build knowledge about inclusive, effective, and culturally responsive approaches to science instruction that will advance equitable science education in K–12 classrooms.

09/01/2024

High-quality early educational experiences, particularly in mathematics, are crucial for students’ success in K-12 schooling. To create these foundational experiences for young children, early childhood educators need opportunities to enhance their mathematics teaching through job-embedded, sustained professional learning. This partnership development project establish a collaboration among early childhood mathematics educators, school and district leaders, the state department of education, and university faculty in Delaware that aims to enhance children’s early mathematics learning by collaboratively designing support systems for strengthening their teachers’ professional learning.

09/01/2024

Research has shown that when teachers have strong content and pedagogical content knowledge that they can provide better quality mathematics instruction to their students and improve student outcomes. The goal of this project is to enhance elementary school teachers’ capacity to improve students’ mathematics learning through a scaled professional development program that uses artificial intelligence (AI) to create a personalized, active learning environment for teachers.

09/01/2024

This project will develop a technology platform that can streamline lesson planning and allow teachers to adapt resources to their students' needs. The project will design and investigate an AI-powered lesson plan tool for middle-grades mathematics teaching called Colleague. Using existing, open-access lesson plans that have been vetted in prior work, the project would refine the tool for generating math lesson plans and supporting teachers to iteratively improve their instruction. Streamlining lesson planning would open more time for teacher creativity and reduce job stress. The study would explore how teachers use Colleague to plan and adapt lessons, the influence on teaching, and the students' learning.

08/15/2024

Although science is increasingly recognized as a key dimension of early learning, findings to date indicate that young children, especially those enrolled in public preschool programs serving historically excluded communities, have limited opportunities to engage in high quality science investigations. The lack of professional learning resources available to teachers makes it challenging for them to feasibly and effectively promote science in their classrooms. To address this need, this four-year design and development project brings together public preschool teachers, families from culturally and linguistically diverse communities, early learning and STEM researchers, and designers of media to co-design a Professional Learning Hub for Early Science.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

This partnership development project deepens an existing partnership between the researcher and leadership of an elementary school in central Texas that serves predominantly Black and Latine students. The project focuses on engaging community members, teachers, and learners at the school in conversation about how mathematics teaching and learning might be improved. This partnering is important because the relationship between schools and communities is often marked by one-way communication and decision-making without dialogue. By promoting dialogue, all members of this partnership can learn more about the mathematical storylines embedded into the community, that is, the stories that community members, teachers, and learners share about their personal relationship to mathematics teaching and learning. 

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

This project will develop and study approaches to equip 4th and 5th grade general and special education teachers to teach computer science (CS) to a broad range of learners with disabilities through professional development. The project will aim to improve accessibility, accommodations, and highlight the role of paraeducators to increase participation and learning in CS for students with disabilities, and it will investigate the impact of the professional development on teachers’ instruction and the influence of the professional development model on student learning, ability beliefs, and attitudes about CS.

08/15/2024

Cybersecurity is becoming an increased concern among young technology users; however, elementary school teachers often have limited preparation to teach students about cybersecurity. This project is designed to iteratively develop, refine, and test an innovative professional development program that supports teachers to infuse cybersecurity into 4th-5th grade mathematics and science instruction. The project will synergistically merge cybersecurity with mathematics and science content in authentic, real-world contexts to teach topics such as cyberbullying, digital security, encryption/decryption, digital privacy, and digital footprint.

08/15/2024

Young children thrive when strong relationships exist between their home and school environments. Early home and school experiences support the development of mathematical skills. Often, schools and teachers struggle to establish these strong relationships; therefore, Math Partners will work with teachers and teaching assistants in classroom design teams to help teachers establish healthy, positive relationships with families that center families’ knowledge and experiences in the context of mathematics.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

Across the nation, many school districts are experiencing rapid expansion in the enrollment of multilingual learners, yet many high school teachers do not have corresponding opportunities to learn how to effectively support these students’ engagement in scientific and engineering practices. This exploratory project will address this issue by developing and testing a model of professional learning for high school teachers in which they learn how to embed the Instructional Conversation pedagogy within standards-aligned scientific and engineering practices. Under this model, high school science teachers will collaborate with high school English for Speakers of Other Languages (ESOL) teachers to co-develop linguistically sustaining instructional materials that provide students with intentionally scaffolded opportunities to use scientific dialogue as they collaborate to explain natural phenomena or design solutions through engineering.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

Research has shown that the emotions elementary school teachers and their students experience when engaging in mathematics activities play an important role in mathematics teaching and learning. Yet, the field lacks mathematics-specific professional learning opportunities for elementary teachers that focus on the role of teachers’ and learners’ emotions in the way they experience mathematics in the classroom. This project will address these gaps by developing and testing the Orienting Positive Emotions in New Teachers for Mathematics (OPEN for Math) professional learning program.

08/15/2024

This project will develop and study approaches to equip 4th and 5th grade general and special education teachers to teach computer science (CS) to a broad range of learners with disabilities through professional development. The project will aim to improve accessibility, accommodations, and highlight the role of paraeducators to increase participation and learning in CS for students with disabilities, and it will investigate the impact of the professional development on teachers’ instruction and the influence of the professional development model on student learning, ability beliefs, and attitudes about CS.