Projects

08/01/2020

This project explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities.

08/01/2020

This project explores how classroom conversations can engage children in making sense of the problems that they are addressing and foregrounding ethics while making design decisions. To provide children with opportunities to engage in rich classroom conversations, the project team uses a community-based engineering curricular approach, where students address problems that affect their local school communities.

07/01/2017

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

08/15/2011

This project is developing a model for integrating best practices in technology-supported instructional design and formative assessment for genetics instruction in upper elementary, middle and high school. Using the Web-based Inquiry Science Environment platform, the project is developing school curriculum that scaffold and model scientific practices, enable students to interface with real-world problems, provide opportunities for students to make connections between visible phenomena and underlying genetic processes, and promote student monitoring and reflection on learning.

09/01/2013

This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).

09/01/2013

This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).

09/01/2013

This is a collaborative project to develop, test, and analyze sets of technology-supported diagnostic classroom assessments for middle school (grades 6-8) physical science. Assessments are aligned with the performance assessment and evidence-centered design methodologies suggested in the Framework for K-12 Science Education (NRC, 2012).

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2019

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

08/01/2019

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

09/01/2024

Artificial intelligence (AI) is transforming numerous industries and catalyzing scientific discoveries and engineering innovations. To prepare for an AI-ready workforce, young people must be introduced to core AI concepts and practices early to develop fundamental understandings and productive attitudes. Neural networks, a key approach in AI development, have been introduced to secondary students using various approaches. However, more work is needed to address the interpretability of neural networks and human-machine collaboration in the development process. This exploratory project will develop and test a digital learning tool for secondary students to learn how to interpret neural networks and collaborate with the algorithm to improve AI systems. The learning tool will allow students to interact with complex concepts visually and dynamically. It will also leverage students’ knowledge and intuition of natural languages by contextualizing neural networks in natural language processing systems.

02/15/2018

This EAGER project aims to conduct a study designed to operationalize a culturally responsive computing framework, from theory to empirical application, by exploring what factors can be identified and later used to develop items for an instrument to assess youths' self-efficacy and self-perceptions in computing and technology-related fields and careers.

07/15/2018

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences and serve as a starting point for supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis).

08/15/2016

This project will study five elementary STEM schools from across the U.S. that are inclusive of students from underrepresented groups in order to determine what defines these schools and will use an iterative case study replication design to study the design and implementation of five exemplary eSTEM schools with the goal of developing a logic model that highlights the commonalities in core components and target outcomes across the schools, despite the different school contexts.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

08/01/2022

The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.

05/15/2020

This project will develop a set of educative resources, assessment tools and teacher professional development (PD) activities to support teachers in developing knowledge of CS standards and improving their instructional pedagogy. Teachers will learn to use formative assessments related to these standards to determine student understanding. Improved CS instruction that is responsive to the needs and challenges of the student population is particularly critical in school districts with a large population of students who are typically underserved and under-represented in computer science. The project, a partnership between SRI International and the Milwaukee Public School District, will provide professional development experiences tied to standards instead of a specific curriculum in order to support diverse teachers teaching a variety of computer science curricula using different programming languages. Teachers will receive training via a combination of virtual webinars and face-to-face instruction. Teachers will have opportunities to evaluate their own teaching and measure their students' progress towards the standards.

09/01/2011

This project is developing and testing a curricular learning progression of early algebra objectives and activities for students in grades 3 - 5. The goal of the work is to provide teachers with curricular guidance and instructional resources that are useful in preparing students for success in study of algebra at the middle grade level. The project is also developing and validating assessment tools for evaluating student progress toward essential pre-algebra mathematical understandings.

10/01/2023

The purpose of this project is to develop a home mathematics environment (HME) intervention for preschool-aged children with developmental delays (DD). The project includes caregivers of children with DD as collaborators in the iterative design process to develop feasible and sustainable HME intervention activities.

09/15/2008

A principled framework is created for the development of learning progressions in science that can demonstrate how their use can transform the way researchers, educators and curriculum developers conceptualize important scientific constructs. Using the construct of transformation of matter, which requires understanding of both discrete learning goals and also the connections between them, a hypothetical learning progression is constructed for grades 5-12.

07/01/2019

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.