This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.
Projects
This project focuses on the teaching practice of building on student thinking, a practice in which teachers engage students in making sense of their peers' mathematical ideas in ways that help the whole class move forward in their mathematical understanding. The study examines how teachers incorporate this practice into mathematics discussions in secondary classrooms by designing tasks that generate opportunities for teachers to build on students' thinking and by studying teachers' orchestration of whole class discussions around student responses to these tasks.
This project is significant because it uses the community for learning science of the environment, in an approach called Citizen Science or Participatory Science Research (PSR). The project will target learning outcomes for underrepresented middle and high school students in the urban and diverse East San Francisco Bay Area, and will refine a theory of learning that makes more explicit the connections between science practices, identity, and value and relevance.
This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.
This project proposes an assessment study that focuses on improving existing measures of teachers' Mathematical Knowledge for Teaching (MKT). The research team will update existing measures, adding new items and aligning the instrument to new standards in school mathematics.
This project will conduct an in-depth analysis of instructional coaching by analyzing archived video-recorded coaching sessions with middle and high school science teachers. The goal of the project is to analyzing the videos and previously collected quantitative outcome data to create descriptive profiles of instructional coaching and identify which key coaching elements lead to desired teacher and student outcomes.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
For this project, researchers will iteratively develop simulations to include sonifications, non-speech sounds that represent visual information, aimed at enhancing accessibility for all learners, but particularly for those with visual impairments to produce sonified simulations, professional development resources, design guidelines and exemplars, and publications.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.
This project's first goal is to study the national landscape of mathematics intervention classes, which are additional classes provided to struggling students, including learners with and without identified disabilities. We administered a survey to a nationally representative sample of 2,024 urban and suburban public schools with grades 6-8 to find out how these classes are being implemented and the types of challenges faced. Approximately 43% of schools (876 schools) responded to the survey; the findings revealed widespread implementation of these classes (69% of schools) and highlighted a range of practices in terms of class size, scheduling, duration, staffing and content focus. Our project's second goal is to apply the survey findings to design professional development to support teachers of mathematics intervention classes, helping them to build knowledge and practices for addressing students' wide range of learning needs.
The project will design an assessment based on learning progressions for the concept of function - a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses.
This project will scale up, implement, and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework, which seeks to improve performance and participation in mathematics of students in distressed school districts, particularly low-income students from underserved populations.
This project will build on prior funding to design a next generation diagnostic assessment using learning progressions and other learning sciences research to support middle grades mathematics teaching and learning. The project will contribute to the nationally supported move to create, use, and apply research based open educational resources at scale.
This project will explore the potential of video-based formative feedback to enhance professional development around ambitious instruction for secondary teachers in urban schools.
The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.
This project will develop and test a digital platform for middle school mathematics classrooms to help students deepen and communicate their understanding of mathematics. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class.
This project builds on a prior study that demonstrated increases in students' knowledge of argumentation and their performance on mathematics assessments. The project will extend the use of the argumentation intervention into all eighth grade content areas, with a specific focus on students' learning of reasoning and proof, and contribute to understanding how students' learning about mathematical practices that can help them learn mathematics better.
The project is a four-year, early-stage design and development project aimed to refine a state-of-the-art professional development model to prepare K-8 teachers and instructional leaders in urban schools to facilitate and support successful K-8 STEM Education. The project will specifically explore which components of the program promote teacher change, which aspects of the program support structural changes for STEM teaching in schools, and what holds promise for interdisciplinary STEM teacher development.
This project focuses on the creation of the initial functionality for a dynamic microworld, Proportions Playground, designed to support teachers in developing a coherent understanding of proportional reasoning. The Proportions Playground project seeks to both develop a unique pilot software application for the iPad and explore how it supports teachers in developing a coherent, robust definition of proportions.
