Projects

09/15/2024

The United States faces the critical need to prepare students and the future workforce for advances in Artificial Intelligence (AI). This project will develop curriculum that will engage middle-school students in learning science and basic AI concepts and in developing related career interests.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/15/2024

While research has identified some features of professional development that impact teacher and student outcomes, there is still much mathematics education researchers do not know regarding which design features are most impactful to learning and how specific features of professional development connect to teacher learning. This project will investigate six prior NSF-funded professional development projects looking for features of the professional development associated with teacher uptake and learning, such as how the establishment of community or norms of collaboration support teachers’ long-term classroom practice.

09/15/2024

Expectations and opportunities for student learning in science are expanding to involve students in making sense of and addressing real questions and problems in the world around them. At the same time, school districts are seeking innovative ways to support teachers to provide instruction that takes into account students’ perspectives and uses those perspectives to teach science. This project seeks to understand how a large, urban school district implements a practice-based professional learning program for teachers that employs performance assessments as a lever for instructional improvement by eliciting, centering, and advancing students’ thinking in middle school science classrooms.

09/15/2024

Exemplary teaching in STEM fields encourages students from diverse backgrounds to pursue further education and careers in science, technology, engineering and mathematics. Improving teaching, however, first requires an understanding of the current landscape of STEM instruction. The 2027 National Survey of Science and Mathematics Education (NSSME+), the seventh iteration of the study, will continue monitoring the status of science, mathematics, and computer science education in the U.S. The study will examine policies and practices related to STEM education, including the extent to which instruction currently models effective, evidence-based teaching practices, and factors that influence teachers’ decisions about content and pedagogy. It will also attend to factors that contribute to the underrepresentation of some groups in STEM, further adding to general knowledge about ways to broaden participation.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/15/2024

To position students as mathematically competent, middle grades mathematics teachers need easily accessible professional learning (PL), including opportunities to participate in discussions about both mathematics content and teaching practices. A Video in the Middle (VIM) based learning series, the Coherent Asynchronous Online Mathematics Teacher Professional Learning (PL) project will help address this need by producing (1) a refined version of the existing VIM design and development prototype and (2) an asynchronous, collaborative online learning series comprising ten 2.5-hour sessions that focus on positioning students as mathematically competent in representing and conceptualizing transformations-based similarity, slope, or linear functions.

09/01/2024

Artificial intelligence (AI) is transforming numerous industries and catalyzing scientific discoveries and engineering innovations. To prepare for an AI-ready workforce, young people must be introduced to core AI concepts and practices early to develop fundamental understandings and productive attitudes. Neural networks, a key approach in AI development, have been introduced to secondary students using various approaches. However, more work is needed to address the interpretability of neural networks and human-machine collaboration in the development process. This exploratory project will develop and test a digital learning tool for secondary students to learn how to interpret neural networks and collaborate with the algorithm to improve AI systems. The learning tool will allow students to interact with complex concepts visually and dynamically. It will also leverage students’ knowledge and intuition of natural languages by contextualizing neural networks in natural language processing systems.

09/01/2024

This project will develop a technology platform that can streamline lesson planning and allow teachers to adapt resources to their students' needs. The project will design and investigate an AI-powered lesson plan tool for middle-grades mathematics teaching called Colleague. Using existing, open-access lesson plans that have been vetted in prior work, the project would refine the tool for generating math lesson plans and supporting teachers to iteratively improve their instruction. Streamlining lesson planning would open more time for teacher creativity and reduce job stress. The study would explore how teachers use Colleague to plan and adapt lessons, the influence on teaching, and the students' learning.

09/01/2024

This project will examine middle school students’ learning of earth and physical sciences and their functional understanding of engineering design as they engage in newly developed environmental justice-oriented curriculum units in community-based service projects. In collaboration with middle school teachers and their students, two STEM units that integrate science inquiry, engineering design, and community-based service projects will be co-designed, implemented, and refined while examining students’ science and engineering learning and their development of science/STEM interest and agency.

09/01/2024

Science education integrates the study of and practices from the Next Generation Science Standards (NGSS). At the fundamental level, the pedagogy involves teaching and learning that emphasizes the use of scientific inquiry and the engineering design process to develop students’ problem-solving, critical thinking, and collaboration skills. Unfortunately, funding and professional development for teachers, which is essential to assure successful implementation of science lessons to increase the potential for student achievement, is lacking.

Therefore, this NSF-funded science-education research project explored the development of a model that deepens the existing partnerships among grass-roots, non-profit community education organizations, K-12 public schools, and local university partners. Together, they worked collaboratively to develop a model where teachers could work together with community partners to implement high-quality, place-based, NGSS-aligned science learning opportunities that actively engage students in their classrooms during the school day.

This research project has led to the development of a full PreK-12 DRK proposal for high-quality professional development for teachers, using the newly developed Teacher-Plus-Community Partners (T+CP) model, with the goals of increasing science efficacy for teachers and impacting student achievement in science.

09/01/2024

Research has shown that educational games can increase student motivation, support critical thinking, problem-solving, and communication skills. This project will explore what approaches to the design of virtual labs, games, and bridging curriculum can most effectively support middle-school student development of interest and learning of scientific practices and contribute to the development of a science identity.

09/01/2024

This project will support a conference series, including an in-person gathering and virtual follow-up meetings, that will bring together teachers, researchers, education leaders, and instructional material designers to build a shared understanding of how to integrate the use of high-quality instructional materials with the benefits of localizing these materials to better address students’ contexts and backgrounds. By fostering dialogue, sharing models, and setting priorities for future research and design, the project seeks to build knowledge about inclusive, effective, and culturally responsive approaches to science instruction that will advance equitable science education in K–12 classrooms.

09/01/2024

This project will examine middle school students’ learning of earth and physical sciences and their functional understanding of engineering design as they engage in newly developed environmental justice-oriented curriculum units in community-based service projects. In collaboration with middle school teachers and their students, two STEM units that integrate science inquiry, engineering design, and community-based service projects will be co-designed, implemented, and refined while examining students’ science and engineering learning and their development of science/STEM interest and agency.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

Despite years of research and interventions to address inequities that are largely related to race, science education continues to perpetuate these inequities in both participation and outcomes in science. This CAREER project will address the need to provide science teachers with a framework for considering race and racial dynamics in science teaching as well as exemplars in science teaching and professional development to support teachers’ teaching identities and praxis.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/15/2024

Providing students with exposure to high quality computational thinking (CT) activities within science classes has the possibility to create transformative educational experiences that will prepare students to harness the power of CT for authentic problems. By building upon foundational research in human-AI partnership for classroom support and effective practices for integrating CT in science, this collaborative research project will advance understanding of how to empower teachers to lead computationally enriched science activities with adaptive pedagogical tools.

08/15/2024

National frameworks for science education in the United States advocate for bringing science, technology, engineering, mathematics, and computer science (STEM+CS) disciplines together in K-12 classrooms. Although curricular materials are emerging to support STEM+CS integration, research demonstrates that teachers need support to engage students in authentic STEM+CS practices that leverage and sustain student and community assets. This project aims to support middle school teachers in their enactment of an integrated science, engineering, and computational modeling curriculum unit and understand how teachers customize computationally rich, Next Generation Science Standards (NGSS)-aligned curricular materials to their own schools and classrooms.

08/01/2024

Although there is a push to integrate artificial intelligence (AI) in K-12 education, the novelty of AI means that little is known about what schools, teachers, students, and parents know, need, and expect regarding AI in classrooms. The lack of access to AI knowledge and training is especially significant in rural high-needs communities where schools are under-resourced. This year-long partnership development project will seek to strengthen and expand existing research-practice partnerships (RPPs) with East Tennessee teachers and school leaders, develop new RPPs with parents and students enrolled in East Tennessee middle and high schools, and co-construct a shared vision for AI that aligns with the needs and assets of the partner community.

08/01/2024

Environmental issues like wildfires can serve as effective science learning contexts to promote scientific literacy and citizenship. This project will partner with teachers, teacher educators, and disciplinary experts in data science, fire ecology, public health, and environmental communication to co-design a data-driven, justice-oriented, and issue-based unit on wildfires. In the unit, student will engage in various data practices to gain insights into the issue of wildfires and how it affects their lives and communities. The project seeks to theorize how learners can leverage disciplinary knowledge and practices in environmental and data science as a foundation for making data-informed actions towards a more just and sustainable society.

08/01/2024

This project will improve STEM education by studying the various strategies taught to and used by students for solving multi-digit multiplication and division to develop a more cohesive understanding of children's multiplicative reasoning. The work will also support teachers’ ability to better support students’ multiplicative reasoning strategies via professional development videos that help them learn about students’ strategies.

08/01/2024

Anxiety about math has increased for some students due to disruptions in their learning during the COVID-19 pandemic. This partnership development project involving Portland State University and the Tigard-Tualatin School District addresses pandemic-related learning challenges in middle school mathematics, with a focus on math anxiety. Across the yearlong project, the partners play equal roles in co-developing research, practice, and policy proposals aimed at enhancing math outcomes and reducing math anxiety among the district’s middle school students.

07/01/2024

This project partners with a mathematics department at a public middle school to co-design, analyze, and improve teachers’ translanguaging pedagogies, that is pedagogies that draw on students’ full linguistic repertoires as resources for their learning. This project will investigate how teachers make sense of and enact translanguaging pedagogies, how translanguaging pedagogies shape students’ mathematical experiences and learning opportunities, and how teachers’ learning of translanguaging spaces can be supported.