Projects

08/01/2018

This project will study implementation of an effective professional learning model for elementary science teachers that includes teacher leaders, administrators and university educators in a system perspective for improving science instruction in ways that make it sustainable.

07/15/2018

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences and serve as a starting point for supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis).

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

07/01/2018

This project is developing and studying high school curriculum modules that integrate social justice topics with statistical data investigations to promote skills and interest in data science among underrepresented groups in STEM.

06/01/2018

The goal of this study is to improve elementary science teaching and learning by developing, testing, and refining a framework and set of tools for strategically incorporating forms of uncertainty central to scientists' sense-making into students' empirical learning.

05/15/2018

The Next Generation Science Standards (NGSS) emphasize the integration of scientific knowledge and the practices of science, a recognition that science classrooms are complex learning environments. Meeting this expectation requires teachers to move beyond traditional routines of practice to become adaptive experts who can adjust their teaching to maximize learning in varied classroom situations. The project will work with teachers to implement a three-year professional development program to assist teachers in the development of adaptive expertise through implementation of an argument-based inquiry approach.

10/01/2017

This project focuses on the research and develop an engineering education technology and pedagogy that will support project-based learning of science, engineering, and computation concepts and skills underlying the strategically important "smart" and "green" aspects of the infrastructure. The project will develop transformative technologies and curriculum materials to turn the campus of a high school or a geographical information system such as Google Maps into an engineering laboratory with virtually unlimited opportunities for learning and exploration.

10/01/2017

This project will work in partnership with the Santa Clara Unified School District (SCUSD) to adapt a previously designed Professional Learning (PL) model based on the District's objectives and constraints to build the capacity of teacher leaders and a program coordinator to implement the adapted PL program. The project is examining the sustainability and scalability of a PL model that supports the development of teachers' pedagogical content knowledge and instructional practices. The project is contributing knowledge about how to build capacity in districts to lead professional learning in science that addresses the new teaching and learning standards and is responsive to the needs of their local context.
 

09/15/2017

The primary aim of this study is to develop mathematics screening assessment tools for Grades K-2 over the course of four years that measure students' abilities in numeric relational reasoning and spatial reasoning. The team of researchers will develop Measures of Mathematical Reasoning Skills system, which will contain Tests of Numeric Relational Reasoning (T-NRR) and Tests of Spatial Reasoning (T-SR). The measures will be intended for use by teachers and school systems to screen students to determine who is at-risk for difficulty in early mathematics, including students with disabilities.

09/01/2017

The project plans to develop and study a series of metacognitive strategies that support learning and engagement for struggling middle school students during makerspace experiences. The study will focus narrowly on establishing a foundational understanding of how to ameliorate barriers to engaging in design learning through the use of metacognitive strategies. The project plans to translate and apply research on the use of metacognitive strategies in supporting struggling learners to develop approaches that teachers can implement to increase opportunities for students who are the most difficult to reach academically.

09/01/2017

This project will investigate the integration of engineering design, practices, and thinking into middle school life science curriculum while providing opportunities for students to foster knowledge of and increase interest in life and biosciences. The project will specifically respond to the need to create, implement, and evaluate a model intervention that will advance the knowledge base for establishing and retaining underrepresented minorities in STEM fields.

09/01/2017

This project builds upon the prior work by creating problem-solving measures for grades 3-5. The elementary assessments will be connected to the middle-grades assessments and will be available for use by school districts, researchers, and other education professionals seeking to effectively measure children's problem solving. The aims of the project are to (a) create three new mathematical problem-solving assessments and gather validity evidence for their use, (b) link the problem-solving measures (PSMs) with prior problem-solving measures (i.e., PSM6, PSM7, and PSM8), and (c) develop a meaningful reporting system for the PSMs.

08/15/2017

This project will design, develop, and test a new curriculum unit for high school chemistry courses that is organized around the question, "How does chemistry shape where I live?" The new unit will integrate relevant Earth science data, scientific practices, and key urban environmental research findings with the chemistry curriculum to gain insights into factors that support the approach to teaching and learning advocated by current science curriculum standards.

08/01/2017

This project will examine the impact on mathematics learning of an initiative to provide kindergartners in an urban school district with personal tablet devices that include free, widely available digital mathematics resources. The research questions examine how teachers use table-based mathematics resources during instruction, how caregivers and children engage with table-based mathematics resources, and how the resources then relate to kindergartners mathematics learning.

08/01/2017

This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. It is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching.

08/01/2017

Project Accelerate blends the supportive structures of a student's home school, a rigorous online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The project could potentially lead to the success of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

07/01/2017

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

07/01/2017

This project explores "backward transfer", or the ways in which new learning impacts previously-established ways of reasoning. The PI will observe and evaluate algebra I students as they learn quadratic functions and examine how different kinds of instruction about the new concept of quadratic functions helps or hinders students' prior mathematical knowledge of the previous concept of linear functions. This award will contribute to the field of mathematics education by expanding the application of knowledge transfer, moving it from only a forward focused direction to include, also, a backward focused direction.

06/01/2017

The purpose of this project is to design and empirically evaluate a second grade science program, Scientific Explorers, aimed at promoting an early foundation for learning science among all students, including students at risk for or with learning disabilities in reading and mathematics. To support students as they engage in scientific tasks associated with Earth's Systems, this project will engineer the Scientific Explorers program around a guided inquiry framework, and develop and empirically validate a science assessment that measures students' knowledge and application of core science concepts and practices related to Earth's Systems.

05/15/2017

This project is focused on the work and learning of teachers as they engage youth from underrepresented groups in studying chemistry as a subject relevant to heavy metal contamination in their neighborhoods. The project will position Chicago teachers and students as Change Makers who are capable of addressing the crises of inequity in science education and environmental contamination that matter deeply to them, while simultaneously advancing their own understanding and expertise. The project will examine the malleable factors affecting the ability of teachers to engage underrepresented students in innovative urban citizen science projects with a focus on the synergistic learning that occurs as teachers, students, scientists, and community members work together on addressing complex socio-scientific issues.

10/01/2016

Building upon prior research on Head Start curriculum, this phase of Readiness through Integrative Science and Engineering (RISE) will be expanded to include classroom coaches and community experts to enable implementation and assessment of RISE in a larger sample of classrooms. The goal is to improve school readiness for culturally and linguistically diverse, urban-residing children from low-income families, and the focus on science, technology, and engineering will address a gap in early STEM education.

09/15/2016

The goal of this project is to develop a classroom observation tool and an online professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse.

09/15/2016

The project will develop and refine an electronic Test of Early Numeracy (e-TEN) in English and Spanish that will assess informal and formal knowledge of number and operations in domains including verbal counting, numbering, numerical relationships, and mental addition/subtraction. The overarching goal of the assessment design is to create a measure that is more accurate, more accessible to a wider range of children, and easier to administer than existing measures.