The development of six curricular projects that integrate mathematics based on the Common Core Mathematics Standards with science concepts from the Next Generation Science Standards combined with an engineering design pedagogy is the focus of this CAREER project.
Projects
This collaborative, exploratory, learning strand project focuses on improving reflective decision-making among elementary school students during the planning and re-design activities of the engineering design process. Five teacher researchers in three elementary schools provide the classroom laboratories for the study. Specified units from Engineering is Elementary, a well-studied curriculum, provide the engineering content.
This exploratory proposal is researching and developing professional learning activities to help high school teachers use available and emerging social media to teach scientific argumentation. The project responds to the growing emphasis on scientific argumentation in new standards.
The proposed project initiates new research and an integrated education plan to address specific problems in middle school mathematics classrooms by investigating (1) how to effectively differentiate instruction for middle school students at different reasoning levels; and (2) how to foster middle school students' algebraic reasoning and rational number knowledge in mutually supportive ways.
This working conference will help university professors who teach elementary mathematics methods courses learn to use Complex Instruction, a research-proven pedagogy for building mathematical content knowledge and supporting the learning of diverse students.
This project is designing and conducting a crowd-sourced open innovation challenge to young people of ages 13-18 to mitigate levels of greenhouse gases. The goal of the project is to explore the extent to which the challenge will successfully attract, engage and motivate teen participants to conduct sustained and meaningful scientific inquiry across science, technology and engineering disciplines.
The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.
Understanding Space Through Engineering Design investigates how engaging K-5 children from underrepresented populations in the design of packages, maps, and mechanisms supports the development of spatial reasoning and spatial mathematics. The prime conjecture is that engineering design makes spatial mathematics more tangible and purposeful, and that systematic support for spatial reasoning and mathematics, in turn, influences the nature of children's designs and their understanding of how those designs work.
This exploratory project develops and tests graphical scaffolds which facilitate high school students' coordination of connecting evidence with alternative explanations of particular phenomena, as well as their collaborative argumentation about these phenomena. At the same time, the project examines how high school students use these tools to construct scientifically accurate conceptions about major topics in Earth and space sciences and deepens their abilities to be critically evaluative in the process of scientific inquiry.
This project is developing, iteratively refining and evaluating a science curriculum for Pre-K classrooms with units on Plant Growth, How Things Move, and What Makes Shadows by integrating traditional classroom resources (large and small group activities, hands-on activities, read-alouds) with digital media (touch screen tablets, photos and short videos, and games/simulations).
This exploratory project helps high school students learn complex Global Climate Change (GCC) science by making it personally relevant and understandable. CHANGE creates a prototype curriculum, and integrates it into elective Marine Sciences high school courses. Research will examine the project's impact on student learning of climate science, student attitude toward science, and teacher instruction of climate science.
This study explores the following issues in 9 schools across 3 neighborhoods: (1) How student engagement in STEM is enabled and constrained by the school's relations with its external community; (2) The similarities and differences in partnerships across different types of schools in three different urban neighborhoods by mapping networks, and assessing the costs and benefits of creating, maintaining, and dissolving network ties; and (3) How to model school and network decisions, relations, and resources using an operations research framework.
The overarching goal of this project is to develop innovative instructional resources and professional development to support middle grades teachers in meeting the challenges set by college- and career-ready standards for students' learning of algebra.
The objective of this project is to develop a toolkit of resources and practices that will help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, two-year-long professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.
This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge.
This project will use classroom-based research to teach children about important algebraic concepts and to carefully explore how children come to understand these concepts. The primary goal is to identify levels of sophistication in children's thinking as it develops through instruction. Understanding how children's thinking develops will provide a critical foundation for designing curricula, developing content standards, and informing educational policies.
Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.
This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12.
This project will research the programmatic changes that resulted from the NSF investment in Centers for Learning and Teaching of Mathematics (CLT) at the 31 participating institutions. It will provide information on the core elements of doctoral preparation in mathematics education at the institutions and ways in which participation in the CLTs has changed their programs.
This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses.
Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.
This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.
Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project developed a middle school ecology unit and related teacher professional development to help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.
Computational and algorithmic thinking are new basic skills for the 21st century. Unfortunately few K-12 schools in the United States offer significant courses that address learning these skills. However many schools do offer robotics courses. These courses can incorporate computational thinking instruction but frequently do not. This research project aims to address this problem by developing a comprehensive set of resources designed to address teacher preparation, course content, and access to resources.
This Engineering Teacher Pedagogy project implements and assesses the promise of an extended professional development model coupled with curriculum enactment to develop teacher pedagogical skills for integrating engineering design into high school biology and technology education classrooms.