Projects

08/01/2023

Leaders in mathematics and elementary education are organizing and hosting a conference that brings together researchers from mathematics education, cognitive science, and special education. Organized over three face-to-face meetings with follow-up virtual meetings, the conference is designed to generate a set of teaching and learning principles as well as a collaborative research agenda among the fields, reflecting existing agreements regarding early mathematics and uncovering areas of disagreement where further exchange and generation of knowledge is needed.

07/01/2023

One crucial predictor of success in STEM disciplines is spatial reasoning ability, which involves mentally manipulating and representing objects in space. However, STEM courses often neglect the purposeful development of spatial reasoning skills, and limited knowledge exists on effective training methods. This project aims to address this gap by: 1) identifying neural and cognitive processes associated with successful mental rotation, a fundamental aspect of spatial reasoning; 2) assessing the responsiveness of these processes to training; and 3) measuring the transfer of training effects to real-world STEM problems, specifically focusing on introductory chemistry.

06/15/2023

Acquiring scientific knowledge and skills requires persisting through challenges, yet it has become increasingly common for parents in the United States to step in and solve problems for their children. This type of over-engaged parenting leads preschool-age children to have lower persistence, lower executive function, and worse reading and math achievement in grade school across socioeconomic backgrounds. Prior work leaves open major theoretical and practical questions about the beliefs that drive over-engaged parenting and children’s response to it. Our research aims to fill these gaps by examining the causes and consequences of over-engaged parenting so that we can better understand how caregivers can support children's scientific success upon school entry.

04/01/2023

Videos of teaching have become a popular tool for facilitating teacher learning, with the potential to powerfully impact teacher practice. However, less is known about specific mechanisms through which teachers learn from video. The goal of this study is to build foundational knowledge about teacher learning by using video clips of science instruction within a professional development (PD) context. 

02/15/2023

This project examines middle school students’ graph literacy from an asset-based perspective, documenting the ways in which students think about graphs (i.e., their cognitive strategies and intuitive insights), and the ways in which instruction can build upon that thinking in order to support the development of graph literacy. Drawing from students’ graphical representations of real-life contexts (e.g., population growth) that span various mathematical domains, this program of research will develop a holistic theoretical framework that can inform mathematics instruction in multiple content areas.

08/01/2022

This project uses neural and behavioral measures of learning as a basis for making improvements to an immersive high school course that trains students in flexible spatial cognition and data analysis. Tracking students into college, the project measures long-term effects of improved spatial cognition resulting from the modified geospatial course curriculum.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

10/01/2021

This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential STEM learning from short duration experiences such as field trips. The project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences, and provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions.

07/01/2021

The purpose of this project is to develop and conduct initial studies of a multi-grade program targeting critical early math concepts. The project is designed to address equitable access to mathematics and STEM learning for all students, including those with or at-risk for learning disabilities and underrepresented groups.

11/01/2020

The goal of this study is to build foundational knowledge about teacher learning by using video clips of science instruction within a professional development context. The researchers will study the infusion of principles from cognitive science as possible ways to enhance teacher learning from video, including contrasting cases and self-explanation principles.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

09/01/2020

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

06/01/2020

Adopting a teaching and curricular approach that will be novel in its integration of custom explanatory storybook materials with hands-on investigations, this project seeks to promote third grade students' understanding of small- and large-scale evolution by natural selection. By studying students across multiple school districts, this research will shed light on the benefits to diverse students of instruction that focuses on supporting children's capacities to cogently explain aspects of the biological world rather than learn disparate facts about it.

06/01/2020

The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.

03/15/2020

This award will support teacher practitioners from the U.S. to attend the 2020 International Mind, Brain, and Education Society (IMBES) conference. The IMBES conference is an opportunity for scholars and educators to come together to engage in reciprocal dialogue about research and practice in biology, education, and the cognitive and developmental sciences.

09/01/2019

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

08/01/2019

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

08/01/2019

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

08/01/2019

This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms.

09/15/2018

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions.

09/01/2018

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

07/15/2018

This project will support students to develop evidence-based explanations for the impact of disturbances on complex systems. The project will focus on middle school environmental science disciplinary core ideas in life, Earth, and physical sciences and serve as a starting point for supporting students to coordinate different sources of information to parse out the direct and indirect effects of disturbances on components of a system and to examine the interconnections between components to predict whether a system will return to equilibrium (resilience) or the system will change into a new state (hysteresis).

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.