Projects

12/15/2024

Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.

12/15/2024

Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.

12/01/2024

STEM learning is a function of both student level and classroom level characteristics. Though research efforts often focus on the impacts of classrooms level features, much of the variation in student outcomes is at the student level. Hence it is critical to consider individual students and how their developmental systems (e.g., emotion, cognition, relational, attention, language) interact to influence learning in classroom settings. This is particularly important in developing effective models for personalized learning. To date, efforts to individualize curricula, differentiate instruction, or leverage formative assessment lack an evidence base to support innovation and impact. Tools are needed to describe individual-level learning processes and contexts that support them. The proposed network will incubate and pilot a laboratory classroom to produce real-time metrics on behavioral, neurological, physiological, cognitive, and physical data at individual student and teacher levels, reflecting the diverse dynamics of classroom experiences that co-regulate learning for all students.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

To successfully understand and address complex and important questions in the field of environmental science, many kinds of communities’ knowledge about their local environment need to be engaged. This one-year partnership development project involves a collaboration to design an approach that would yield opportunities for K-12 students to learn about environmental science in ways that honor both traditional STEM knowledge and Native ways of knowing among the Pomo community in California.

10/15/2024

Progress in science is motivated and directed by uncertainties. Yet even though uncertainty is a crucial fulcrum for scientific thought, school students are taught science within an overarching assumption that scientific knowledge is certain. This project explores the intellectual leverage of enabling middle school students to experience how scientific work grapples with uncertainty. The overall goal of this project is to understand how teachers can create equitable learning environments for culturally and linguistically diverse learners using Student Uncertainty for Productive Struggle as a pedagogical model in middle school science classrooms.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

As the nation tackles the challenges of energy transition, K-12 education must prepare a future STEM workforce that can not only apply STEM skills but also address reasoning through complex sociotechnical problems involving social justice. Aligned with the principles of socially transformative engineering and focused on students of color, this project involves the design and implementation of a novel STEM education curriculum that will support the development of secondary students’ abilities to reason through ambiguous and ethical challenges through design projects and to transfer these competencies to everyday life and future workplaces.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

09/15/2024

Expectations and opportunities for student learning in science are expanding to involve students in making sense of and addressing real questions and problems in the world around them. At the same time, school districts are seeking innovative ways to support teachers to provide instruction that takes into account students’ perspectives and uses those perspectives to teach science. This project seeks to understand how a large, urban school district implements a practice-based professional learning program for teachers that employs performance assessments as a lever for instructional improvement by eliciting, centering, and advancing students’ thinking in middle school science classrooms.

09/15/2024

Exemplary teaching in STEM fields encourages students from diverse backgrounds to pursue further education and careers in science, technology, engineering and mathematics. Improving teaching, however, first requires an understanding of the current landscape of STEM instruction. The 2027 National Survey of Science and Mathematics Education (NSSME+), the seventh iteration of the study, will continue monitoring the status of science, mathematics, and computer science education in the U.S. The study will examine policies and practices related to STEM education, including the extent to which instruction currently models effective, evidence-based teaching practices, and factors that influence teachers’ decisions about content and pedagogy. It will also attend to factors that contribute to the underrepresentation of some groups in STEM, further adding to general knowledge about ways to broaden participation.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/15/2024

Scientific literacy is an important educational goal, and the way scientists communicate is key to how science, as an institution, succeeds in its work. Conveniently, the recent and rapid rise of preprint publication platforms means that the public now has greater access to scientific communication and dialogue that occurs through open peer review. This is driving the need to educate students on, and engage them in, the evolving ways in which scientists construct and communicate knowledge. The goal of this project is to engage students in authentic science communication innovations through the implementation of a preprint and peer-review platform specifically designed for high school students.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/01/2024

This project will support a conference series, including an in-person gathering and virtual follow-up meetings, that will bring together teachers, researchers, education leaders, and instructional material designers to build a shared understanding of how to integrate the use of high-quality instructional materials with the benefits of localizing these materials to better address students’ contexts and backgrounds. By fostering dialogue, sharing models, and setting priorities for future research and design, the project seeks to build knowledge about inclusive, effective, and culturally responsive approaches to science instruction that will advance equitable science education in K–12 classrooms.

09/01/2024

This project will examine middle school students’ learning of earth and physical sciences and their functional understanding of engineering design as they engage in newly developed environmental justice-oriented curriculum units in community-based service projects. In collaboration with middle school teachers and their students, two STEM units that integrate science inquiry, engineering design, and community-based service projects will be co-designed, implemented, and refined while examining students’ science and engineering learning and their development of science/STEM interest and agency.

09/01/2024

One of the best ways to help K-12 students learn science is by having them engage in the scientific inquiry and engineering design processes used by STEM professionals. Unfortunately, support for the development of high-quality, place-based, and NGSS-aligned learning experiences that actively engage students has not been forthcoming in all school districts. This gap is particularly true for rural schools and communities. Further, continuing education for teachers, which is essential to assure successful implementation of high-quality science lessons that are grounded in students' local community experiences, is lacking as well. This partnership development project addresses these gaps in science teaching and learning by deepening an existing partnership among local non-profit community education organizations, K-12 public schools, and local university partners. In consultation with new education technology industry partners, the project team will work collaboratively to develop high-quality NGSS-aligned science learning opportunities that actively engage students in lessons relevant to their local environment.

09/01/2024

Research has shown that educational games can increase student motivation, support critical thinking, problem-solving, and communication skills. This project will explore what approaches to the design of virtual labs, games, and bridging curriculum can most effectively support middle-school student development of interest and learning of scientific practices and contribute to the development of a science identity.

09/01/2024

Despite the importance of addressing climate change, existing K-12 curricula struggle to make the urgency of the situation personally relevant to students. This project seeks to address this challenge in climate change education by making the abstract, global, and seemingly intractable problem of climate change concrete, local, and actionable for young people. The goal of this project is to develop and test actLocal, an online platform for K–12 teachers, students, and the public to easily create localized climate change adaptation simulations for any location in the contiguous United States. These simulations will enable high school students and others to implement and evaluate strategies to address the impacts of climate change in their own communities.

09/01/2024

Navigating complex societal issues such as water shortages, forest fires, and other phenomena-based problems requires understanding the social, technological, and scientific dimensions surrounding the issues and they ways these dimensions interact, shift, and change. Despite its importance, however, developing students’ socioscientific literacy has received limited attention in elementary science teaching and learning contexts. This project begins to address this problem of practice by focusing first on developing elementary teachers’ socioscientific literacy and their capacity to integrate socioscientific issues and local phenomena in their science teaching practice.

09/01/2024

This project will examine middle school students’ learning of earth and physical sciences and their functional understanding of engineering design as they engage in newly developed environmental justice-oriented curriculum units in community-based service projects. In collaboration with middle school teachers and their students, two STEM units that integrate science inquiry, engineering design, and community-based service projects will be co-designed, implemented, and refined while examining students’ science and engineering learning and their development of science/STEM interest and agency.

08/15/2024

Writing instruction in math and science is an essential area of research to ensure equitable K-12 and college experiences and to better prepare all students in ways that provide opportunities to pursue STEM career pathways. This project is a meta-analysis in the area of secondary (grades 6-12) math and science writing instruction.