Projects

09/01/2021

This project will study the utility of a machine learning-based assessment system for supporting middle school science teachers in making instructional decisions based on automatically generated student reports (AutoRs). The assessments target three-dimensional (3D) science learning by requiring students to integrate scientific practices, crosscutting concepts, and disciplinary core ideas to make sense of phenomena or solve complex problems.

08/15/2021

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

08/15/2021

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

08/15/2021

This project will investigate the challenges, needs, and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF), in particular the Division of Research on Learning in Informal and Formal Settings (DRL). The project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs.

08/15/2021

Widely-adopted science education standards have expanded expectations for students to learn science research processes. To address these needs, the project will research and develop curricular materials and classroom practices that teachers can use to bring authentic science into their classes and engage students as active science researchers. The project, called MothEd, will focus on the study of moths, which are well-suited to the project’s goal of having students conduct authentic scientific investigations.

08/01/2021

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.

08/01/2021

The Framework for K-12 Science Education has set forth an ambitious vision for science learning by integrating disciplinary science ideas, scientific and engineering practices, and crosscutting concepts, so that students could develop competence to meet the STEM challenges of the 21st century. Achieving this vision requires transformation of assessment practices from relying on multiple-choice items to performance-based knowledge-in-use tasks. However, these performance-based constructed-response items often prohibit timely feedback, which, in turn, has hindered science teachers from using these assessments. Artificial Intelligence (AI) has demonstrated great potential to meet this assessment challenge. To tackle this challenge, experts in assessment, AI, and science education will gather for a two-day conference at University of Georgia to generate knowledge of integrating AI in science assessment.

08/01/2021

This project is exploring teachers' capacity to manage student epistemic uncertainty as a pedagogical resource that supports student’s productive struggle and the development of conceptual knowledge during project-based learning instruction in middle school science classrooms.

08/01/2021

Using high school statewide longitudinal data from Maryland from 2012-2022, this study will first document who has taught STEM-CTE courses over this period. After exploring the teaching landscape, the study will then explore whether qualifications (i.e., education, credentials, teaching experience) of teachers in STEM-CTE high school courses were associated with their students’ success.

07/01/2021

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.

07/01/2021

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.

07/01/2021

This project will use visualizations from an easily accessible tool from NOAA, Science On a Sphere, to help students develop critical thinking skills and practices required to effectively make meaning from authentic scientific data. The project will use arts-based pedagogies for observing, analyzing, and critiquing visual features of data visualizations to build an understanding of what the data reveal. The project will work with middle school science teachers to develop tools for STEM educators to use these data visualizations effectively.

07/01/2021

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

07/01/2021

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

07/01/2021

Understanding the impact of STEM education efforts requires researchers to have cutting-edge knowledge of advanced research methods and the ability to translate research knowledge to multiple and diverse stakeholder audiences. The Evidence Quality and Reach (EQR) Hub project will work explicitly to strengthen these two competencies through focused work with the Discovery Research PreK-12 research community. The hub will develop and implement workshops and learning opportunities for researchers in the community, convene communities of practice to discuss specific research methods, and engage in individualized consultations with DRK-12 projects.

07/01/2021

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.

07/01/2021

This partnership of BSCS Science Learning, Oregon Public Broadcasting, and the National Oceanic and Atmospheric Administration advances curriculum materials development for high quality units that are intentionally designed for adaptation by teachers for their local context. The project will create a base unit on carbon cycling as a foundation for understanding how and why the Earth's climate is changing, and it will study the process of localizing the unit for teachers to implement across varied contexts to incorporate local phenomena, problems, and solutions.

07/01/2021

This project is developing and researching customization tools to support teachers’ instructional shifts to achieve equitable sensemaking in middle school science classrooms. These tools will help teachers to better notice and leverage the ideas and experiences of non-dominant students to support all students in equitable sensemaking.

07/01/2021

This project will provide a field-based science and mathematics teacher education program that supports teaching focused on students’ affective development through culturally responsive practices. The project's teacher education program takes place over a two-year period and models how culturally responsive and affective instruction can occur in the STEM classroom to engage students.

07/01/2021

This project takes advantage of language to help students form their own ideas and pursue deeper understanding in the science classroom. The project will conduct a comprehensive research program to develop and test technology that will empower students to use their ideas as a starting point for deepening science understanding. Researchers will use a technology that detects student ideas that go beyond a student's general knowledge level to adapt to a student's cultural and linguistic understandings of a science topic.

07/01/2021

Increased focus on school accountability and teacher performance measures have resulted in STEM instruction that emphasizes content and procedural knowledge over critical thinking and real-world applications. Yet, critical thinking and application are essential in developing functional scientific literacy skills among students. This need is perhaps most pressing in economically depressed urban settings. One strategy to promote STEM engagement and learning is to make clear and meaningful connections between STEM concepts, principles, and STEM-related issues relevant to the learner. Socioscientific issues (SSI) and the Social Justice STEM Pedagogies (SJSP) framework can provide a powerful avenue for promoting the desired kinds of engagement. This collaborative research project is designed to investigate the effectiveness of a professional development (PD) program for STEM teachers to develop their pedagogical content knowledge in teaching SSI and SJSP.

07/01/2021

This project will engage middle school students in place-based coastal erosion investigations that interweave Indigenous knowledge and Western STEM perspectives. Indigenous perspectives will emphasize learning from place and community; Western STEM perspectives will focus on systems and computational thinking. The project will position middle school students in a culturally congruent epistemological stance (student-as-anthropologist), allowing them to build Earth science learning from both Indigenous knowledge as well as Western-style inquiry and promote their ability to apply integrated Earth science, mathematics, and computational thinking skills in the context of coastal erosion.

07/01/2021

In COVID Connects Us, the project team investigates the challenges of learning how to support justice-centered ambitious science teaching (JuST). The project team will partner with networks of secondary science teachers as they first implement a common unit aimed at engaging youth in science and engineering practices in ways that are culturally sustaining, focused on explanation-construction and intentionally anti-oppressive. The teachers will then use their shared experiences to revise future instruction in ways that are justice-centered and that engage students in the ways research suggests is important for their learning.

07/01/2021

This project will develop an integrated, justice-oriented curriculum and a digital platform for teaching secondary students about data science in science and social studies classrooms. The platform will help students learn about data science using real-world data sets and problems. This interdisciplinary project will also help students meaningfully analyze real-world data sets, interpret social phenomena, and engage in social change.

06/15/2021

Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms.