Projects

09/01/2022

This project considers how teachers’ engagement in scientific sensemaking as an opportunity for teachers’ learning to support more expansive science learning environments. It seeks to address two ongoing challenges in science teacher education: the need for teachers to learn (1) to recognize, value, and integrate students’ diverse ways of knowing, communicating, and relating with one another and phenomena and (2) to acknowledge and disrupt restrictive narratives that shape what counts as science in schools and who is seen as a scientist. This project will provide new models for science teacher education to engage teachers in expansive scientific sensemaking, seeking to develop more humanizing relationships between teachers, students, and science. More broadly, the project will produce a new structure for professional learning and resources for supporting more heterogeneous and equitable forms of science in teacher education. 

09/01/2022

Familial presence in school supports children’s learning. However, few models exist that illustrate forms of familial presence in STEM learning that center familial cultural knowledge and practice. The project will produce a model for familial engagement in STEM along with instructional tools and illustrative case-studies that can be used by teachers and school districts nationally in support of increasing students’ STEM learning. This three-year study investigates new instructional practices that support rightful familial presence in STEM as a mechanism to address the continued racial and class gaps in STEM achievement for historically marginalized students.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

In this project, the research team will create a computer-mediated design environment that enables students in grades 7-10 to collaboratively explore, make connections, generate, and evaluate design ideas that address environmental science challenges. A unique feature of the project is its use of an artificial intelligent (AI) design mentor that relies on Design Heuristics, a research-based creativity tool that guides students through exploration of ideas and “learns” from students’ design processes to better assist them. The project will examine students’ perceptions of science and engineering, their ability to integrate academic and personal or community knowledge, their confidence for engaging in engineering, and their design thinking.

09/01/2022

This project will develop and test a learning progression for middle school physical science that incorporates the three dimensions identified in Next Generation of Science Standards (NGSS): the Disciplinary Core Ideas of matter, interaction, and energy; the Science and Engineering Practices of constructing explanations and developing and using models; and the Crosscutting Concepts of cause and effect and systems and system models. Bringing together all three NGSS dimensions is an innovation that allows for the project to explore the variety of learning pathways that students may follow as they apply scientific knowledge and practices to make sense of compelling phenomena or solve complex problems.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project addresses tools to support students in reading and evaluating a variety of sources to compare various claims addressing socioscientific issues. It draws on literacy concepts from science education and social studies to develop and implement scaffolding tools that can support students' understanding of the links among data, evidence, and claims while considering the trustworthiness and plausibility of sources. The project will design and test such instructional scaffolds with the goal of helping middle and high school science and social studies students to deepen their evaluation skills as they make reasoned evaluations as expected of citizens in a functional democratic society.

09/01/2022

This project aims to restructure middle school science education around Grand Challenges (GCs) such as pandemics, climate events, and diminishing biodiversity. Anchoring science education around grand challenges can motivate students learning and provide a meaningful context for science curriculum and assessment. By engaging in the units around GCs, middle school science teachers and students will have opportunities to work with real data, engage in argumentation based on evidence, and take part in solutions to the grand challenges.

08/01/2022

This project will design and research a professional development (PD) model in which elementary teachers experience integrated, place-based, culturally sustaining STEM curriculum focused on local watersheds and grounded in local Native American cultural values and knowledge. The teachers will then design and implement their own culturally relevant STEM unit, guided by the PD, which is situated within their local watershed and Indigenous community.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

The project will design and research the Cultural Connections Process Model (CCPM), a place-based, culturally sustaining STEM educational resources and model that will engage Alaska Native and other high school students in STEM. The project approach is strongly informed by Indigenous knowledge systems (i.e., knowledge embedded in the cultural traditions of regional, Indigenous or local communities) and incorporates relevant arctic scientific research.

08/01/2022

This study will investigate factors influencing teacher change after professional learning (PL) experiences and will examine the extent to which modest supports for science and engineering teaching in grades 3-5 sustain PL outcomes over the long term, such as increases in instructional time devoted to science, teacher self-efficacy in science, and teacher use of reform-oriented instructional strategies aligned with the Next Generation Science Standards.

08/01/2022

This project aims to deepen understanding of how to support and develop early childhood science learning by articulating science and engineering practices observed in children’s play. It also aims to develop early childhood educators’ abilities to identify and support nascent science and engineering practices with young children. Through this project early childhood educators will engage in professional learning using a refined version of the Science and Engineering Practices Observation Protocol (SciEPOP), an observation tool that allows researchers to identify and describe high-quality play-based engagement with science and engineering practices. Through video-rich professional learning along with peer-based coaching, early childhood educators will grow in their ability to prepare play environments, identify nascent science and engineering practices, enhance and extend investigations through play, and record and reflect upon this learning.

08/01/2022

This project uses neural and behavioral measures of learning as a basis for making improvements to an immersive high school course that trains students in flexible spatial cognition and data analysis. Tracking students into college, the project measures long-term effects of improved spatial cognition resulting from the modified geospatial course curriculum.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

08/01/2022

This project will design instructional assessment materials by using an innovative and unique design approach that brings together the coherent and systematic design elements of evidence-centered design, an equity and inclusion framework for the design of science materials, and inclusive design principles for language-diverse learners. Using this three-pronged approach, this project will develop a suite of NGSS aligned formative assessment tasks for first-grade science and a set of instructional materials to support teachers as they administer the formative assessments to students with diverse language skills and capacities.

08/01/2022

This project aims to deepen understanding of how to support and develop early childhood science learning by articulating science and engineering practices observed in children’s play. It also aims to develop early childhood educators’ abilities to identify and support nascent science and engineering practices with young children. Through this project early childhood educators will engage in professional learning using a refined version of the Science and Engineering Practices Observation Protocol (SciEPOP), an observation tool that allows researchers to identify and describe high-quality play-based engagement with science and engineering practices. Through video-rich professional learning along with peer-based coaching, early childhood educators will grow in their ability to prepare play environments, identify nascent science and engineering practices, enhance and extend investigations through play, and record and reflect upon this learning.

08/01/2022

The project will develop a teacher professional learning (PL) model that focuses on middle-school biological sciences in addressing real world problems. Systems thinking is central to understanding biology systems. Game design has been shown to help develop systems thinking in teachers and students. Students will participate in PL to illustrate the value of distributed expertise by sharing their knowledge of computer. Teachers will adapt their existing curriculum and will co-design games with students to experience participatory practices.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

07/15/2022

The project will design, develop, and test a research-based professional development (PD) approach that will ensure that teachers, and ultimately their middle-school students, have the knowledge to act in a way that promotes zero net loss of biodiversity in their communities. Through their participation in the PD, teachers will be equipped to plan for and implement NGSS-aligned instruction, facilitate student identification and understanding of biodiversity and environmental justice issues in their local community, and foster student capacity to take action. Students will come to understand that biodiversity is a global issue that they can influence at the local level, and will become empowered, in both their knowledge and their agency, to be leaders in solving biodiversity problems in their communities.

07/01/2022

This project is working to develop, implement, and research the introduction of data experiences and practices into a series of interdisciplinary, middle school project-based learning modules. The project examines how interdisciplinary data education can provide opportunities for students to take more control of their own learning and develop positive identities related to data, through integration with social studies and science topics. Curriculum modules and teaching resources produced by the project serve as guides for subsequent efforts at integrating data science concepts into teaching and learning in various subject areas.

07/01/2022

This project aims to meet this need by developing PreK-5, equity-oriented, field-based, interdisciplinary curricular materials that support students' socioecological reasoning and sustainable decision making. The science learning experiences will be integrated across disciplines from literacy to civic and social studies lessons. The curricular materials will be part of a science education model that facilitates family engagement in ways that transform relations between educators, families, and students' science learning. The curricular activities will be co-designed with teachers while using local nature and culture as a resource.

07/01/2022

This project connects interdisciplinary researchers and experts from four tribal nation partners to develop and implement an in-service teacher professional certificate program that integrates Indigenous Knowledge into STEM teaching. This multi-sited teacher professional development model will enroll K-12 teachers in four different Native-serving regions of the rural West into a 12-month certificate program that combines Indigenous science, Coupled Human and Natural Systems, and Land education concepts into an experiential learning cycle with local and broad study of learning with the Land. The project will add knowledge about the transferability of local epistemologies and practices and national science standards within four specific Indigenous contexts and expand space for tribal-lead professional development to transform teacher classroom practice.

07/01/2022

Students of color must have access to robust and meaningful opportunities to learn science in classrooms that center their assets and humanity. This project aims to cultivate such spaces through designing and studying teacher professional learning focused on pedagogical practices that engage students of color meaningfully in science learning. These practices leverage students’ assets to foster growth in science and scientific habits of mind. This project will support pre-service and practicing teachers in developing tools for practice and reflection that focus on equity and highlighting the assets of students of color in secondary science.