This study aims to understand parents' perspectives on the educational impacts of COVID-19 by leveraging a nationally representative, longitudinal study, the Understanding America Study (UAS). The study will track educational experiences during the summer of 2020 and into the 2020-21 school year and analyze outcomes overall and for key demographic groups of interest.
Projects
This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.
This research study focuses on the impact of different teacher preparation and induction models, as well as on the quality and persistence of secondary science teachers. Combining the strengths of case-based research with a quasi-experimental design this study will follow 120 secondary science teachers for three years from four different and well characterized preservice - induction programs.
Research Experiences for Teachers (RET) programs have been designed to give teachers authentic scientific inquiry experience, but their results have remained largely unexamined. This research focuses on analyzing RET programs through description of their essential features, their efficacy in fostering teachers’ understanding and enactment of inquiry, their interaction with the personal characteristics of participating teachers, and the influence of teaching through inquiry on student learning in science.
This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The project seeks to determine the core elements of the curriculum that support successful use. The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level.
This project researches the use of cyberinfrastructure to implement a strategy for using online telescopes as a laboratory to engage middle and high school students in cutting edge science research while providing them with significant new opportunities to apply STEM concepts, practice inquiry, and design and learn about the nature of scientific discovery.
The project will develop a teacher professional learning (PL) model that focuses on middle-school biological sciences in addressing real world problems. Systems thinking is central to understanding biology systems. Game design has been shown to help develop systems thinking in teachers and students. Students will participate in PL to illustrate the value of distributed expertise by sharing their knowledge of computer. Teachers will adapt their existing curriculum and will co-design games with students to experience participatory practices.
This project will focus on an early stage exploratory study of an idea that will reveal ways to develop more effective interventions to address student retention in bioscience and bioengineering pipelines. The study will attempt to initiate a new line of research in search of factors associated with bioscience and bioengineering education as a novel approach for uncovering factors that may negatively influence student participation in these fields.
This project will explore the influence of a professional learning community model on preparing preservice and novice science teachers to teach in culturally and linguistically diverse classrooms of English language learners. The project will study the effect of a professional learning community model on teachers' self-efficacy beliefs and practices as it relates to teaching science to this population.
This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.
Videos of teaching have become a popular tool for facilitating teacher learning, with the potential to powerfully impact teacher practice. However, less is known about specific mechanisms through which teachers learn from video. The goal of this study is to build foundational knowledge about teacher learning by using video clips of science instruction within a professional development (PD) context.
The goal of this study is to build foundational knowledge about teacher learning by using video clips of science instruction within a professional development context. The researchers will study the infusion of principles from cognitive science as possible ways to enhance teacher learning from video, including contrasting cases and self-explanation principles.
This professional development project engages a sample of kindergarten and 1st-grade teachers in a series of workshops, during which teachers will work individually and together to design and test new lesson plans that enhance teachers' abilities to help young children think and act like a scientist. Moreover, teachers work individually and together to construct lessons that connect science content to young learners' cultural backgrounds, interests and prior knowledge.
This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.
This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.
This project uses new psychometric techniques to create a technological tool that could evaluate how well students in the 4th-8th mathematics and science classrooms respond to complex performance tasks. The purpose of this tool is to improve the instruction of teachers in mathematics and science. It will produce real-time individualized diagnoses of instructional needs to help teachers plan instruction that specifically addresses the learning needs of each student in that class.
This project engages children in classrooms across the country in an authentic investigation of Devonian fossils. Goals include supporting children in the use of evidence in constructing explanations of natural phenomena, and motivating culturally and linguistically diverse groups of children to engage in learning science. Deliverables include development and testing of an interactive website where children learn how to identify the fossils they find and add their own data to an emerging database.
The project will provide the opportunity for upper elementary students to learn computer science and build strong collaboration practices. Leveraging the promise of virtual learning companions, the project will collect datasets of collaborative learning for computer science in diverse upper elementary school classrooms; design, develop, and iteratively refine its intelligent virtual learning companions; and generate research findings and evidence about how children collaborate in computer science learning and how best to support their collaboration with intelligent virtual learning companions.
This project will use an iterative approach to design activities and supports that foster pedagogical argumentation for use in undergraduate teacher education courses. This project will examine: 1) whether and how PSTs engage in pedagogical argumentation and 2) whether and how this engagement impacts how they listen and respond to student ideas.
This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.
This project is developing a comprehensive science curriculum for grades 9-11 and related professional development materials. The curriculum prepares students for high stakes testing, accommodates a new understanding about how students learn, updates teacher content and pedagogical knowledge and serves an increasingly diverse student population. The curriculum consists of eight one-semester modules -- two each in biology, chemistry, Earth science, and physics.
Science education integrates the study of and practices from the Next Generation Science Standards (NGSS). At the fundamental level, the pedagogy involves teaching and learning that emphasizes the use of scientific inquiry and the engineering design process to develop students’ problem-solving, critical thinking, and collaboration skills. Unfortunately, funding and professional development for teachers, which is essential to assure successful implementation of science lessons to increase the potential for student achievement, is lacking.
Therefore, this NSF-funded science-education research project explored the development of a model that deepens the existing partnerships among grass-roots, non-profit community education organizations, K-12 public schools, and local university partners. Together, they worked collaboratively to develop a model where teachers could work together with community partners to implement high-quality, place-based, NGSS-aligned science learning opportunities that actively engage students in their classrooms during the school day.
This research project has led to the development of a full PreK-12 DRK proposal for high-quality professional development for teachers, using the newly developed Teacher-Plus-Community Partners (T+CP) model, with the goals of increasing science efficacy for teachers and impacting student achievement in science.
This project investigates how to support sustained engagement in computational modeling in middle school classrooms in two ways: 1) Design and develop an accessible modeling toolkit and accompanying thematically linked curricular units; and, 2) Examine how this toolkit and curriculum enable students to become sophisticated modelers and integrate modeling with other scientific practices such as physical experimentation and argumentation.
The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops.
As part of a SAVI, researchers from the U.S. and from Finland will collaborate on investigating the relationships between engagement and learning in STEM transmedia games. The project involves two intensive, 5 day workshops to identify new measurement instruments to be integrated into each other's research and development work. The major research question is to what degree learners in the two cultures respond similarly or differently to the STEM learning games.