Projects

07/15/2018

This project will address the need for engineering resources by applying an innovative pedagogy called Imaginative Education (IE) to create middle school engineering curricula. In IE, developmentally appropriate narratives are used to design learning environments that help learners engage with content and organize their knowledge productively. This project will combine IE with transmedia storytelling.

08/01/2022

The focus of this project is the design of learning experiences in different high school science courses to help students gain experience in computational thinking. The project uses a partnership between two universities and school district to develop and refine the units as a collaboration between researchers, teachers, and school leaders. The goal is to help all students have opportunities to learn about computational thinking in multiple science courses.

07/01/2018

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

07/01/2015

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. 

08/15/2009

SmartGraphs activities run in a web browser; there is no software to download or install. SmartGraphs allows students to interact with on-screen graphs to learn about linear equations, the motion of objects, population dynamics, global warming, or other STEM topics that use scatter plots or line graphs. Teachers and students may also use and share existing activities, which are released under a Creative Commons license (see http://www.concord.org/projects/smartgraphs#curriculum).

05/15/2021

This project represents a new approach to quality assessment of K-12 science and engineering learning experiences. By updating and expanding the Dimensions of Success (DoS) observation tool initially established for informal science learning settings to middle school science and engineering classrooms (DoS-MSSE), the project will create and implement a sustainable and scalable system of support for teachers who are learning how to implement the Next Generation Science Standards (NGSS) Framework for K-12 effectively and equitably.

01/01/2008

This project supports five graduate students with backgrounds in the natural and learning sciences as they achieve masters-level expertise in a science discipline and pursue coursework and complete dissertations in science education research. The program prepares them to 1) collaborate with educational and developmental psychologists and discipline-based science education researchers, and 2) to develop and teach courses that break down the traditional barriers between science teaching methods courses and science content courses for teachers.

09/01/2014

This project  will develop a video recording and analysis system called VideoReView (VRV) that allows grade four science teachers to record, tag, and analyze video in their classroom in real time. The investigators will then study and enhance the system in the context of professional learning communities of teachers. 

08/01/2021

The project focuses on the development of formative assessment tools that highlight assets of students’ use of crosscutting concepts (CCCs) while engaged in science and engineering practices in grades 9-12 Life Sciences.

09/01/2011

This project will iteratively design, develop, field test, refine, and rigorously study a six-unit, facilitated, online professional development (PD) course focusing on energy-related concepts in the context of alternative energy. The primary audience is high school science teachers teaching out of their field of endorsement and serving students underrepresented in the sciences. The project will investigate whether the PD will precipitate changes in teacher knowledge and practice that result in higher student achievement.

09/01/2020

This exploratory project will design, pilot, and evaluate a 10-week, energy literacy curriculum unit for a program called Energy and Your Environment (EYE). In the EYE curriculum, students will study energy use and transfer in their own school buildings. They will explore how Earth systems supply renewable and nonrenewable energy, and how these energy sources are transformed and transferred from Earth systems to a school building to meet its daily energy requirements.

08/01/2019

This project will engage teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.

09/01/2022

This project examines the effect of an assessment system that automatically generates feedback based on students’ open-ended assessment responses in chemistry and physics consistent with a previously-developed learning progression that describes the successively more complex understandings students can develop about electrical interactions. The scoring system will provide individualized feedback to students and class summaries to their teachers.

08/15/2007

This project collects evidence supporting the validity of test instruments and initial characterization of high school teachers' background and use of materials and pedagogies. The project is constructing and validating multiple forms of test instruments that can be used for the evaluation of interventions (e.g. professional development, implementation of new curricula) and the measurement of aspects of teacher knowledge (e.g. subject matter, knowledge of student misconceptions).

09/01/2010

Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.

09/01/2014

This project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities.

09/01/2014

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

09/01/2008

This project is developing a science teacher education model focused on the establishment of a diagnostic learning environment through formative assessment as a powerful instructional practice for promoting learning of all students (grades 5–12) on the topic of energy with the goal of increasing the understanding of the processes through which teachers develop the requisite knowledge, skills, and dispositions for effective deployment of a formative assessment instructional cycle.

09/15/2012

This project supports teachers in improving classroom discourse and reasoning by identifying key teaching strategies for building scientific concepts in successful discussions. It links these strategies together with the use of visual displays in classroom instruction with a particular emphasis on simulations. The teacher video-based workbooks that result from this study provide such a resource that is open-source and available to a larger population of teachers than just those in the project.

07/01/2018

The main goal of this project is to better understand how to build and sustain the capacity of elementary science teachers in grades 3-5 to instruct and formatively assess students in ways that are aligned with contemporary science education frameworks and standards. To achieve this goal, the project will use classroom-based science assessment as a focus around which to build teacher capacity in science instruction and three-dimensional learning in science.

09/15/2007

This project develops resources to facilitate the involvement of college and university physics departments in the professional development of K-12 teachers of physics and physical science. Research investigates how students and teachers learn content and reasoning skills for applying concepts to real world situations; how teachers can learn content in a way that helps them promote student learning; and how teachers can learn to assess student understanding in a way that promotes student learning.

09/01/2010

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

07/15/2013

This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

09/01/2011

This project designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments.

07/01/2014

This project will address two obstacles that hinder elementary science instruction: (1) a lack of content-specific teaching knowledge (e.g., research on effective topic-specific instructional strategies); and (2) the knowledge that does exist is often not organized for use by teachers in their lesson planning and instruction. The project will collect existing empirical literature for two science topics and synthesize it with an often-overlooked resource -- practice-based knowledge.