CAREER: Implementing Mathematical Modeling for Emergent Bilinguals

This project will support teacher capacity for implementing mathematical modeling lessons by engaging teachers in co-planning and co-teaching with researchers skilled in Emergent Bilingual (EB) mathematics instruction. The outcomes of this project will be a framework for teaching mathematical modeling to EB students, teacher professional development materials that can be used widely to support EB mathematics teachers, and a massive open online course (MOOC) for teachers to support their continued learning about teaching mathematics modeling to EB students.

Full Description

This project supports secondary mathematics teachers in teaching mathematical modeling practices to an Emergent Bilingual (EB) population. EB students in linguistically diverse mathematics classrooms are frequently limited to procedural, rote instruction, despite research-based recommendations that suggest that EBs' mathematical and linguistic proficiency can benefit from engaging in complex mathematical tasks based on real-life situations. The project will support teacher capacity for implementing mathematical modeling lessons by engaging teachers in co-planning and co-teaching with researchers skilled in EB mathematics instruction. The project will collect information about the quality of mathematics instruction in modeling lessons, what students learn, and how teachers changed in how they position EB students as knowers and doers of mathematics. The outcomes of this project will be a framework for teaching mathematical modeling to EB students, teacher professional development materials that can be used widely to support EB mathematics teachers, and a massive open online course (MOOC) for teachers to support their continued learning about teaching mathematics modeling to EB students.

The project draws on three important constructs related to teaching mathematics to emergent bilingual (EB) students: research on the mathematics education of EB students; research on mathematical modeling; and positioning theory. Related to mathematics education of EB students, the project supports teachers in enacting high-quality instruction that incldues high cognitive demand tasks, encourages EBs to engage in and explain their problem solving process, and complements that work with linguistic and contextual supports that support EB students' entry into the tasks. Related to mathematical modeling, the project makes use of the conceptualization of modeling as a vehicle for content (as compared to mathematics content of its own), and envisions the use of modeling practices as particularly supportive of EB students' learning of algebra. In particular, the modeling-as-a-vehicle stance invites teachers to engage students in tasks that contain multiple mathematical representations, which has the potential to both build students' conceptual understandings of algebra and to strengthen EBs' language and communication skills in the context of mathematics. With respect to positioning theory, the project seeks to disrupt the finding that secondary mathematics teachers tend underestimate EB students' mathematical abilities due to their English proficiency standards, causing them to choose lower cognitive demand tasks for these students against established research-based recommendations. The project team will engage EB algebra and pre-algebra teachers in Des Moines Public schools in co-planning and co-teaching lessons using mathematical modeling practice. This co-planning and co-teaching activity constitutes in-situ professional development for teachers. Co-planning sessions, co-taught lessons, and regular teacher interviews will be recorded and analyzed for quality of instruction and changes in teacher positioning of EB students. The research team and teachers will co-analyze student learning data from observations and district-administered standardized assessments to better understand the impact of the modeling lessons on students' algebra learning and achievement. Eight teachers will participate in the work over the life of the project, each supporting EB classes of approximately 20 students per teacher. The outcomes of these analyses will guide the development fo a mathematical modeling framework for teaching EBs, teacher professional development materials made available for similar work in other schools and districts, and a massive open online course designed for teachers to develop their skills for teaching secondary mathematics to EB students.

PROJECT KEYWORDS

Project Materials

Title Type Post date Sort ascending
No content available.