Projects

09/15/2025

Scientific sensemaking is core to learning and doing science. Oral and written language, visual and numerical representations, physical models, and other forms of communication are vital to scientific sensemaking, yet research has not yet fully explored how science curricula can be customized to account for the unique communicative repertoires of individual learners within elementary science classes. This project will address this important gap in practice by developing a suite of tools that elementary teachers can use to customize existing open-source, standards-aligned science curricula, such that these curricula are better able to support students with a range of communicative strengths, including multilingualism.

09/15/2025

Scientific sensemaking is core to learning and doing science. Oral and written language, visual and numerical representations, physical models, and other forms of communication are vital to scientific sensemaking, yet research has not yet fully explored how science curricula can be customized to account for the unique communicative repertoires of individual learners within elementary science classes. This project will address this important gap in practice by developing a suite of tools that elementary teachers can use to customize existing open-source, standards-aligned science curricula, such that these curricula are better able to support students with a range of communicative strengths, including multilingualism.

09/15/2025

This project addresses the critical need for improved mathematics education of elementary teachers and their students by preparing and supporting Elementary Mathematics Specialists (EMSs) who are highly effective mathematics teachers and teacher leaders. The program provides these EMSs with professional development grounded in research-informed practices and focuses on refinement of an existing program. The project aims to develop ambitious, responsive mathematics instruction and to provide high-quality coaching to teacher candidates and novice teachers.

09/01/2025

Given the national priority for America's leadership in science, there is a need to strengthen the quality of teaching and learning in science classrooms. This conference brings together researchers, practitioners, curriculum developers, and policymakers to chart the future of curriculum-based professional development (CPBL) in science education. CBPL is an approach that uses high-quality curricular materials as a catalyst for teacher learning. Presently, the field is not clear about how teachers learn from these well-designed materials and what other supports might be necessary. This conference aims to address pressing questions about how high-quality materials can drive teacher learning, how materials should be designed to support teacher learning trajectories, how CBPL can promote high quality science education, and what organizational supports are needed for successful implementation. Through structured collaboration among stakeholders, the gathering will consolidate existing work and generate concrete plans for advancing both research and practice in ways that honor teacher professionalism while supporting student learning in science.

09/01/2025

Tomorrow's domestic STEM workforce demands that students bring the ability to explain real-world phenomena and solve problems collaboratively. In many school districts, a significant gap persists between this ambitious vision and the realities of current instruction. One promising approach to bridge this gap is the use of high-quality instructional materials (HQIM), which have been shown to improve science teaching and learning. However, school systems often face serious challenges in selecting, adopting, and implementing these materials in ways that lead to consistent implementation across classrooms and lasting change. This project will establish a research-practice partnership between the University of Colorado Boulder and the Weld RE-4 School District in Colorado to better understand and address these challenges. The project will generate new understandings that support the translation of research on how curriculum can improve teaching and learning into practice for a whole school district, and yield insights into how school districts navigate organizational dynamics and competing priorities during curriculum adoption.

09/01/2025

This project synthesizes research on teacher learning to distill ideas and develop a new, deeper understanding of how preK-12 teacher professional learning in mathematics and science influences teacher beliefs, knowledge, and practice. This study will provide information that enables states, districts, and schools to elevate the quality of teacher professional learning in STEM to lead to more effective instruction that fosters more and better STEM student engagement and learning and motivates more students to choose STEM careers.

08/01/2025

Scientific argumentation is one of the eight essential practices in the Next Generation Science Standards. Over the past decade, various methods have been employed to help middle-school students develop argumentation skills in formal learning environments. Despite these efforts, teachers continue to face challenges in motivating and engaging students, particularly in addressing the increasingly varied needs of students. Additionally, districts and schools struggle to integrate these research-based methods into their curriculum in ways that gain buy-in from teachers, students, and stakeholders. To address these challenges, this partnership development project brings together the West Aurora School District in Illinois and Northern Illinois University to pursue two primary goals: (1) co-construct a research and development plan focusing on ways to enhance support and effectiveness in the teaching practice of scientific argumentation through technology, and (2) develop a model for building a design research partnership between a school district and a mid-size public university.

08/01/2025

This project will develop a sustainable Research-Practice Partnership (RPP) model between the Worcester Public Schools (WPS) and the Learning Sciences Lab at Worcester Polytechnic Institute (WPI). Together, WPI and WPS will build the collaborative infrastructure for conducting impactful STEM education research within WPS. Specifically, the RPP will establish and document shared infrastructural systematic processes and materials, brainstorm and facilitate research ideas that address pressing issues in mathematics education, and build a community of trust among researchers, administrators, teachers, and families to make future research and implementation, innovation, and collaboration more impactful, accessible, and efficient.

12/15/2024

Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.

12/15/2024

Socio-environmental issues are both a key to secondary student interest in science and a difficult terrain for teachers to navigate. Problems like climate change have not only scientific but also social, political, and ethical aspects. In order to prepare students for fully understanding such issues, attention needs to be given to how teachers can be supported and learn for effective instruction. This four-year project enacts and researches a teacher professional development program, “Teaching for the Anthropocene,” with middle and high school science teachers that brings a concept of "critical systems thinking." The project investigates how critical systems thinking may enhance teachers’ understanding of socio-environmental issues and support them to integrate those understandings into their curriculum and teaching. The project also identifies potential challenges educators may face as well as what local conditions and program supports help them practically apply critical systems thinking in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

11/01/2024

Science education research shows that incorporating attention-grabbing concepts and experiences—phenomena—in science classes has the power to engage and inspire young learners. However, many elementary teachers, including those in small rural schools, may not have access to or the support to enact high-quality phenomenon-centered curriculum materials and resources in their science teaching practice. This project aims to address this problem of practice by designing, implementing, and investigating a professional learning approach that supports rural elementary teachers and administrators in incorporating local phenomena-driven science learning experiences in their classrooms.

10/15/2024

Progress in science is motivated and directed by uncertainties. Yet even though uncertainty is a crucial fulcrum for scientific thought, school students are taught science within an overarching assumption that scientific knowledge is certain. This project explores the intellectual leverage of enabling middle school students to experience how scientific work grapples with uncertainty. The overall goal of this project is to understand how teachers can create equitable learning environments for culturally and linguistically diverse learners using Student Uncertainty for Productive Struggle as a pedagogical model in middle school science classrooms.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

Providing computer science (CS) education to students prior to high school is critical for catalyzing their interest in CS and closing achievement and development gaps. However, the retention rate for underrepresented group participants in middle school CS teacher preparation programs is lower than that for their peers. The resulting lack of diversity in CS teachers contributes to students’ inequitable access to quality middle school CS education. In this project will investigate effective design and implementation strategies of CS teacher preparation programs aimed to increase the number of middle school CS teachers from underrepresented groups.

10/01/2024

As the nation tackles the challenges of energy transition, K-12 education must prepare a future STEM workforce that can not only apply STEM skills but also address reasoning through complex sociotechnical problems involving social justice. Aligned with the principles of socially transformative engineering and focused on students of color, this project involves the design and implementation of a novel STEM education curriculum that will support the development of secondary students’ abilities to reason through ambiguous and ethical challenges through design projects and to transfer these competencies to everyday life and future workplaces.

10/01/2024

Mathematical Opportunities in Student Thinking (MOSTs) are high-leverage instances of student mathematical thinking that emerge in whole-class discussions. The challenge for teachers is to build on these opportunities to help the whole class understand the mathematics underlying these student contributions. To help teachers learn how to build on MOSTs, there is a need for professional development resources and tools that facilitators can use. There is also a need for research about how teachers use what they learn in professional development in their teaching. This project is developing a teacher learning sequence that will support teachers in learning to productively use student thinking that surfaces in-the-moment during their instruction—that is, in learning to build on MOSTs.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

10/01/2024

Professional learning communities (PLCs) are one common model for teachers to collaborate and learn from one another. The goal of this study is to understand how teachers' expertise is positioned in a PLC and the larger system of the school and district to inform mathematics teaching and learning. This should help schools and districts understand the features of PLCs that are important for supporting teachers as they collaborate and learn.

10/01/2024

Mathematical Opportunities in Student Thinking (MOSTs) are high-leverage instances of student mathematical thinking that emerge in whole-class discussions. The challenge for teachers is to build on these opportunities to help the whole class understand the mathematics underlying these student contributions. To help teachers learn how to build on MOSTs, there is a need for professional development resources and tools that facilitators can use. There is also a need for research about how teachers use what they learn in professional development in their teaching. This project is developing a teacher learning sequence that will support teachers in learning to productively use student thinking that surfaces in-the-moment during their instruction—that is, in learning to build on MOSTs.

10/01/2024

With recent advances in artificial intelligence (AI), the United States needs to develop a diverse workforce with strong computational skills and the knowledge and capability to work with AI. Recent studies have raised questions about the extent to which youth are aware of AI and its application in industries of the future that may limit their interest in pursuing learning that lead toward careers in these industries. To address this challenge, learning trajectories (LTs) will be developed and researched for AI concepts that are challenging for middle and high school students. The project will design and pilot test learning activities and assessments targeting these concepts based on the LTs, offer teacher professional development on the LTs and related activities, and research the effectiveness of the LT-based activities when implemented by teachers during the regular school day.

10/01/2024

Transdisciplinary science integrates knowledge across STEM disciplines to research complex challenges such as climate science, genetic engineering, or ecology. In this project, teachers and students will design smart greenhouses by connecting electronic sensors that can detect light or other environmental data to microcontrollers that can activate devices that water plants and regulate other environmental factors such as temperature or light. This activity brings together engineering, computer science, and horticulture. Working across urban and rural contexts, the project will engage teachers in professional development as they adopt and adapt instructional materials to support their students in learning across disciplines as they build smart greenhouses.

09/15/2024

Data literacy is the ability to ask questions, analyze, interpret, and draw conclusions from data. As the world and the workplace become more data-driven, students need to have stronger data literacy across multiple disciplines, including science. This project uses an instructional framework, Data Puzzles, to investigate how to support middle grades teachers learning to include data literacy in their science teaching. Data Puzzles integrate mathematical and computational thinking with ambitious science teaching instructional practices and contemporary science topics. Students engaging with Data Puzzles resources can analyze real-world climate science data using web-based data analysis tools to make sense of science phenomena and develop data literacy.

09/15/2024

Society has grown to rely on smart, embedded, and interconnected systems. This has created a great need for well-qualified and motivated engineers, scientists, and technicians who can design, develop, and deploy innovative microelectronics and Artificial Intelligence (AI) technologies, which drive these systems. This project will address the need for a more robust computer science and engineering workforce by broadening access to microelectronics and AI education leveraging the cutting-edge technologies of Tiny Machine Learning and low-cost microcontroller systems in diverse high schools. The goal of this project is to engage high-school students and teachers from underresourced communities in the design and creative application of AI-enabled smart, embedded technologies, while supporting their engineering identity development and preparing them for the STEM jobs of tomorrow.