Middle School

Learning Science as Inquiry with the Urban Advantage: Formal-Informal Collaborations to Increase Science Literacy and Student Learning

This project hypothesizes that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. It explores the question "How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science?"

Award Number: 
0918560
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Learning Innovations at WestEd
Full Description: 

The American Museum of Natural History and Michigan State University propose a research and development project focused on DR-K12 challenge #2 and the hypothesis that learners must have access to the real work of scientists if they are to learn both about the nature of science and to do inquiry themselves. The overarching questions that drive this project are: How can informal science education institutions best design resources to support teachers, school administrators, and families in the teaching and learning of students to conduct scientific investigations and better understand the nature of science? How are these resources then used, and to what extent and in what ways do they contribute to participants’ learning? How are those resources then used for student learning? Answering these questions will involve the use of existing and new resources, enhancement of existing relationships, and a commitment to systematically collect evidence. Urban Advantage (UA) is a middle school science initiative involving informal science education institutions that provides professional development for teachers and hands-on learning for students to learn how to conduct scientific investigations. This project will (1) refine the UA model by including opportunities to engage in field studies and the use of authentic data sets to investigate the zebra mussel invasion of the Hudson River ecosystem; (2) extend the resources available to help parents, administrators, and teachers understand the nature of scientific work; and (3) integrate a research agenda into UA. Teaching cases will serve as resources to help teachers, students, administrators, and families understand scientific inquiry through research on freshwater ecosystems, and—with that increased understanding—support student learning. Surveys, observations, and assessments will be used to document and understand the effects of professional development on teachers, students, administrators, and parents. The study will analyze longitudinal, multivariate data in order to identify associations between professional development opportunities for teachers, administrators, and parents, their use of resources to support their own learning and that of students, middle school teachers’ instructional practices, and measures of student learning.

STEM Fusion

This project revises and tests integrated STEM modules and an accompanying professional development component that promote differentiated instruction in order to facilitate high school teachers' instruction of 21st century skills and integrated STEM content. STEM Fusion is a multi-tiered project focusing on the refinement of draft professional resources and the development of teacher skills related to differentiated instruction within integrated STEM instruction.

Lead Organization(s): 
Award Number: 
0733198
Funding Period: 
Wed, 08/15/2007 to Sat, 07/31/2010
Full Description: 

This project revises and tests integrated STEM modules and an accompanying professional development component that promote differentiated instruction in order to facilitate high school teachers' instruction of 21st Century skills and integrated STEM content. STEM Fusion is a multi-tiered project focusing on the refinement of draft professional resources and the development of teacher skills related to differentiated instruction within integrated STEM instruction.

Project goals include: refining, testing, and finalizing draft curriculum modules in science, mathematics, and engineering; developing, refining, and testing a professional development process that promotes the effective curricular integration of science, technology, engineering and math content into real-world applications; and the use of pedagogical strategies that promote differentiated instruction and standards-based curriculum; and disseminating widely models of effective STEM integration utilizing differentiated instruction in the classrooms through the NSDL database, WVDE communication channels, and a STEM Fusion Web portal.

High school teachers will participate in revising draft modules and testing an implementation model that increases the focus on content and pedagogical knowledge. The STEM Fusion modules will utilize differentiated instruction to assist teachers in diagnosing the differences in readiness, interests and learning styles of all students in the class, using a variety of performance indicators and formative assessments. Participating teachers will apply critical math, science, and technology knowledge while they test and revise tiered lessons during summer learning experiences and in their classrooms. The curriculum, aligned with current West Virginia and national science, technology, engineering, mathematics standards, as well as with 21st Century skills, will be refined, pilot tested, further refined, and field tested. An integral part of the professional development component and the STEM Fusion curriculum will be effective strategies for teaching special needs, ESL, and advanced students. Teachers will be supported by content-expert facilitators, who will guide the module revision and implementation process and group reflection.

Science and Mathematics Integration for Literacy Enhancement (Project SMILE)

The goals of STEM instruction are to educate a populace that is scientifically and mathematically literate and who can solve real-world problems by applying science and mathematics. This exploratory project is designed to study the effectiveness of professional development focused on the integration of mathematics and science instruction, mediated by technology tools, to improve middle school teachers' ability to teach scientific inquiry and mathematical problem solving.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0918505
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Project Evaluator: 
Dr. Eleanor Hasse

PolarTREC -- Teachers and Researchers Exploring and Collaborating

This teacher professional enhancement program brings K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Project activities and products foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improvement of teacher content knowledge and teaching practices, shareable online learning resources based on real-world science, improved student knowledge of and interest in the Arctic and Antarctic, and broad public engagement in polar science.

Award Number: 
0632401
Funding Period: 
Mon, 01/01/2007 to Fri, 12/31/2010

Persistent, Enthusiastic, Relentless: Study of Induction Science Teachers (PERSIST)

This project examines the effect of four different types of induction programs (district-based, e-mentoring, university-based, intern programs) on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.

Award Number: 
1247096
Funding Period: 
Sat, 08/01/2009 to Wed, 07/31/2013
Full Description: 

This project examines the effect of four different types of induction programs on 100 5th year teachers of secondary science. The teachers involved in the study have participated in a previous study during their first three years of teaching.

The four types of induction programs are described as follows.

1. General induction programs offered by school districts/regional centers,

2. Science-specific e-mentoring programs offered by higher education or science organizations,

3. Science-specific programs offered by higher education institutions, and

4. Intern programs that allow teachers to earn their teaching credential while they complete their first year of teaching.

Dr. Luft's research concentrates on providing the details that give insights into why newly qualified science teachers are leaving or persisting in the profession and how induction programs affect their beliefs and practices. The research questions for this study are:

1. Do induction programs make a difference in the retention of secondary science teachers during their fourth and fifth year?

2. What characterizations can be made about teachers who persist, their performance, and the assistance they receive?

3. How do beginning science teachers develop over their first five years? How do induction programs contribute to this development?

Data collection includes 8 interviews and 2 classroom observations of each teacher. The CETP-COP and Oregon Teacher Observation Protocol are used for classroom observations. Quantitative data analysis utilizes ANOVAs and HLM, to be followed by a qualitative analysis exploring the findings.

The research team is based at Arizona State University and includes Dr. Luft, Dr. Marilyn Thompson, five graduate students and one undergraduate student. The products will include papers submitted to professional journals, postings to the Arizona Science Coordinators Association listserv, and direct dissemination to school administrators and local meetings.

The impacts will be increased understanding of induction programs, what they achieve and what characteristics are effective. This will help policy makers and administrators modify the programs for increased effectiveness. Given the high rate of teachers leaving the profession during the first five years and the popularity of induction programs, the primary impact would be increased retention of quality teachers.

Exploring the Development of Beginning Secondary Science Teachers in Various Induction Programs

This research study focuses on the impact of different teacher preparation and induction models, as well as on the quality and persistence of secondary science teachers. Combining the strengths of case-based research with a quasi-experimental design this study will follow 120 secondary science teachers for three years from four different and well characterized preservice - induction programs.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0550847
Funding Period: 
Thu, 06/16/2005 to Fri, 04/30/2010

Capacity Building in Computer Science

This exploratory project aims to develop a community of individuals and organizations working together to address critical issues in K-12 computer science education by broadening the awareness of the need for curriculum computer science standards, providing multiple levels of professional development, conducting and disseminating research in computer science education, and promoting this subject as a unique field of study in schools.

Award Number: 
0733379
Funding Period: 
Tue, 01/01/2008 to Thu, 12/31/2009

Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development Program: Scaling for Effectiveness

This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).

Project Email: 
Lead Organization(s): 
Award Number: 
0918277
Funding Period: 
Tue, 09/01/2009 to Sun, 08/31/2014
Project Evaluator: 
McREL
Full Description: 

Supporting Grade 5-8 Students in Writing Scientific Explanations

This project is writing and researching a book supporting grade 5-8 students in scientific explanations and arguments. The book provides written and video examples from a variety of contexts in terms of content and diversity of students. The book and accompanying facilitator materials also provide different teacher instructional strategies for supporting students. The research focuses on how the book and accompanying professional development impact teachers' beliefs, pedagogical content knowledge and classroom practice.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0836099
Funding Period: 
Fri, 08/15/2008 to Sun, 07/31/2011
Full Description: 

 This SGER grant proposes the development of a book and a research study to investigate the impact of that book and accompanying professional development on teachers’ beliefs and classroom practices to support grade 5-8 students in writing scientific explanations.  The project will expand the current body of research around teachers’ beliefs and professional development for scientific explanation and argumentation as well as provide a valuable resource that includes examples of student writing and video cases from diverse learners that can be used by science educators and teachers across the country.

 

Intellectual Merit

The recent National Research Council publication Taking Science to School: Learning and Teaching Science in Grades k-8 (Duschl, Schweingruber & Shouse, 2006) offers a new vision for proficiency in science, which includes a focus that students be able to “Generate and evaluate scientific evidence and explanation” (p.2).  Although this focus on evidence based scientific explanations is prevalent in the current research literature, there are few concrete examples of what this scientific inquiry practice looks like when it is successfully supported in classrooms. We propose to develop a teacher book and accompanying professional development facilitator materials that will help transform how science is being taught in this country.  The book will provide concrete examples in both student written work and video of the current theoretical ideas being advocated in the science education field. By providing this image, the knowledge in the field will be advanced by transforming a theoretical idea and illustrating what it looks like in actual classroom practice that can be used by teachers as well as in teacher preparation and professional development.  The examples will include a variety of different contexts in terms of different content areas, grades 5-8, and students with a variety of backgrounds including diverse students from urban schools.  Furthermore, we propose to research the impact of the book and accompanying professional development on teachers’ beliefs and classroom practice around scientific explanation.  The majority of recent work in the field of scientific explanation and argumentation has focused on curriculum materials, technology tools, and classroom practice. There is currently little research around teacher education and professional development to support teachers in incorporating scientific explanation and argumentation in their classrooms (Zohar, 2008). Consequently, the results from this study will be essential to inform the field about teachers’ beliefs around scientific explanation, how professional development can change those beliefs, and the subsequent impact on teachers’ classroom practices.

 

Broader Impacts

The use of the book by teachers, professional development leaders and teacher educators will have a significant impact on middle school students’ learning throughout the country.  Through the distribution and use of the book, teachers will have access to resources that will help them incorporate scientific explanations in their own classroom practice.  As our previous research has shown (McNeill & Krajcik, 2007; McNeill & Krajcik, 2008a; McNeill, Lizotte, Krajcik & Marx, 2006), using our framework and instructional strategies for scientific explanation can improve diverse students’ ability to write scientific explanations as well as learn key science concepts.  A large percentage of our research has been conducted with urban students including minority students and students from low income families who have not traditionally succeeded in science. Focusing on science as a discourse with distinct language forms and ways of knowing, such as analyzing data and communicating scientific explanations can help language-minority students learn to think and talk scientifically (Rosebery, et al., 1992).  This book will allow the strategies we have found to be successful with diverse students to reach a much larger audience allowing more middle school students to succeed in science. Providing teachers with strategies and examples of how those strategies have been successfully used in real classrooms will help them implement similar practices in their own classrooms and will help more students successfully write evidence based scientific explanations.  The research study around the impact of the book and accompanying professional development will reach twenty-five teachers and their students in the Boston Public School schools which serve primarily low-income (71% eligible to receive free or reduced lunch) inner city students from minority backgrounds.  The publication of the book with Pearson Allyn & Bacon will have the potential of reaching numerous more teachers and their students across the country.

Planting Science Research in Education

This project is implementing a program of professional development for teachers and web interface that links scientists with urban classrooms. Scientist mentors work with students and teachers through the web to carry out an original "authentic" inquiry project in plant science. The classroom intervention involves high school biology students working in assigned teams to generate their own research questions in plant science centered on core biology concepts from the National Science Education Standards.

Lead Organization(s): 
Award Number: 
0733280
Funding Period: 
Sat, 09/15/2007 to Wed, 05/30/2012
Project Evaluator: 
Jane Larson, BSCS
Full Description: 

Project Publications and Presentations:

Hemingway, Claire & Packard, Carol (2011, April). Seeds of Wonder and Discovery. Science Scope, v. 34 (8), p. 38.

Pages

Subscribe to Middle School