Middle School

Exploring the Development of Beginning Secondary Science Teachers in Various Induction Programs

This research study focuses on the impact of different teacher preparation and induction models, as well as on the quality and persistence of secondary science teachers. Combining the strengths of case-based research with a quasi-experimental design this study will follow 120 secondary science teachers for three years from four different and well characterized preservice - induction programs.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0550847
Funding Period: 
Thu, 06/16/2005 to Fri, 04/30/2010

Capacity Building in Computer Science

This exploratory project aims to develop a community of individuals and organizations working together to address critical issues in K-12 computer science education by broadening the awareness of the need for curriculum computer science standards, providing multiple levels of professional development, conducting and disseminating research in computer science education, and promoting this subject as a unique field of study in schools.

Award Number: 
0733379
Funding Period: 
Tue, 01/01/2008 to Thu, 12/31/2009

Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development Program: Scaling for Effectiveness

This is a full research and development project addressing challenge question: How can promising innovations be successfully implemented, sustained, and scaled in schools and districts? The promising innovation is the Science Teachers Learning from Lesson Analysis (STeLLA) professional development (PD) program, which supports 4th- and 5th-grade teachers in teaching concepts in biology (food webs), physical science (phase changes), and earth science (earth’s changing surface, weather).

Project Email: 
Lead Organization(s): 
Award Number: 
0918277
Funding Period: 
Tue, 09/01/2009 to Sun, 08/31/2014
Project Evaluator: 
McREL
Full Description: 

Supporting Grade 5-8 Students in Writing Scientific Explanations

This project is writing and researching a book supporting grade 5-8 students in scientific explanations and arguments. The book provides written and video examples from a variety of contexts in terms of content and diversity of students. The book and accompanying facilitator materials also provide different teacher instructional strategies for supporting students. The research focuses on how the book and accompanying professional development impact teachers' beliefs, pedagogical content knowledge and classroom practice.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0836099
Funding Period: 
Fri, 08/15/2008 to Sun, 07/31/2011
Full Description: 

 This SGER grant proposes the development of a book and a research study to investigate the impact of that book and accompanying professional development on teachers’ beliefs and classroom practices to support grade 5-8 students in writing scientific explanations.  The project will expand the current body of research around teachers’ beliefs and professional development for scientific explanation and argumentation as well as provide a valuable resource that includes examples of student writing and video cases from diverse learners that can be used by science educators and teachers across the country.

 

Intellectual Merit

The recent National Research Council publication Taking Science to School: Learning and Teaching Science in Grades k-8 (Duschl, Schweingruber & Shouse, 2006) offers a new vision for proficiency in science, which includes a focus that students be able to “Generate and evaluate scientific evidence and explanation” (p.2).  Although this focus on evidence based scientific explanations is prevalent in the current research literature, there are few concrete examples of what this scientific inquiry practice looks like when it is successfully supported in classrooms. We propose to develop a teacher book and accompanying professional development facilitator materials that will help transform how science is being taught in this country.  The book will provide concrete examples in both student written work and video of the current theoretical ideas being advocated in the science education field. By providing this image, the knowledge in the field will be advanced by transforming a theoretical idea and illustrating what it looks like in actual classroom practice that can be used by teachers as well as in teacher preparation and professional development.  The examples will include a variety of different contexts in terms of different content areas, grades 5-8, and students with a variety of backgrounds including diverse students from urban schools.  Furthermore, we propose to research the impact of the book and accompanying professional development on teachers’ beliefs and classroom practice around scientific explanation.  The majority of recent work in the field of scientific explanation and argumentation has focused on curriculum materials, technology tools, and classroom practice. There is currently little research around teacher education and professional development to support teachers in incorporating scientific explanation and argumentation in their classrooms (Zohar, 2008). Consequently, the results from this study will be essential to inform the field about teachers’ beliefs around scientific explanation, how professional development can change those beliefs, and the subsequent impact on teachers’ classroom practices.

 

Broader Impacts

The use of the book by teachers, professional development leaders and teacher educators will have a significant impact on middle school students’ learning throughout the country.  Through the distribution and use of the book, teachers will have access to resources that will help them incorporate scientific explanations in their own classroom practice.  As our previous research has shown (McNeill & Krajcik, 2007; McNeill & Krajcik, 2008a; McNeill, Lizotte, Krajcik & Marx, 2006), using our framework and instructional strategies for scientific explanation can improve diverse students’ ability to write scientific explanations as well as learn key science concepts.  A large percentage of our research has been conducted with urban students including minority students and students from low income families who have not traditionally succeeded in science. Focusing on science as a discourse with distinct language forms and ways of knowing, such as analyzing data and communicating scientific explanations can help language-minority students learn to think and talk scientifically (Rosebery, et al., 1992).  This book will allow the strategies we have found to be successful with diverse students to reach a much larger audience allowing more middle school students to succeed in science. Providing teachers with strategies and examples of how those strategies have been successfully used in real classrooms will help them implement similar practices in their own classrooms and will help more students successfully write evidence based scientific explanations.  The research study around the impact of the book and accompanying professional development will reach twenty-five teachers and their students in the Boston Public School schools which serve primarily low-income (71% eligible to receive free or reduced lunch) inner city students from minority backgrounds.  The publication of the book with Pearson Allyn & Bacon will have the potential of reaching numerous more teachers and their students across the country.

Planting Science Research in Education

This project is implementing a program of professional development for teachers and web interface that links scientists with urban classrooms. Scientist mentors work with students and teachers through the web to carry out an original "authentic" inquiry project in plant science. The classroom intervention involves high school biology students working in assigned teams to generate their own research questions in plant science centered on core biology concepts from the National Science Education Standards.

Lead Organization(s): 
Award Number: 
0733280
Funding Period: 
Sat, 09/15/2007 to Wed, 05/30/2012
Project Evaluator: 
Jane Larson, BSCS
Full Description: 

Project Publications and Presentations:

Hemingway, Claire & Packard, Carol (2011, April). Seeds of Wonder and Discovery. Science Scope, v. 34 (8), p. 38.

Universal Design of Inquiry-based Middle and High School Science Curricula (Collaborative Research: Rose)

CAST, the University of Michigan, and EDC are collaborating to create heuristics for universally designed middle and high school science materials; to build an open-source UDL Inquiry Science System (ISS) that enables science curricula to be transformed into digitally supported versions that incorporate UDL features, to use the ISS to produce four UDL exemplars from tested instructional materials, and to evaluate the benefits of these exemplars for grades-5–12 students with and without learning disabilities.

Award Number: 
0730260
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Project Evaluator: 
Dan Zalles, SRI

Connecting Content and Pedagogical Education of Pre-service Teachers (CONCEPT)

The primary goal of the project is to enhance secondary mathematics teacher education for pre-service teachers by developing, implementing and disseminating resources from a four-course curriculum that brings together the study of mathematics content and pedagogy. Three of the courses are problem-based technology enhanced (PBTE) courses in Algebra and Calculus, Geometry, and Probability and Statistics. A fourth course is a capstone course in Teaching and Learning Secondary School Mathematics.

Lead Organization(s): 
Award Number: 
0455797
Funding Period: 
Wed, 06/01/2005 to Sun, 05/31/2009

Logging Opportunities in Online Programs for Science (LOOPS): Student and Teacher Learning

The project makes use of technology to create timely, valid, and actionable reports to teachers by analyzing assessments and logs of student actions generated in the course of using computer-based curriculum materials. The reports allow teachers to make data-based decisions about alternative teaching strategies. The technology supports student collaborations and the assignment of different learning activities to groups, an essential function needed for universal design for learning (UDL).

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733299
Funding Period: 
Tue, 01/01/2008 to Fri, 12/31/2010
Project Evaluator: 
David Reider, Education Design Inc.

High Adventure Science

The High Adventure Science project is bringing some of the big unanswered questions in Earth and space science to middle and high school science classrooms. Students will explore the mechanisms of climate change, consider the possibility of life on other planets, and devise solutions to the impending shortage of fresh water. Each curriculum module features interviews with scientists currently working on the same unanswered question.
Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0929774
Funding Period: 
Tue, 09/15/2009 to Tue, 08/31/2010

Developing, Researching, and Scaling Up SmartGraphs

SmartGraphs activities run in a web browser; there is no software to download or install. SmartGraphs allows students to interact with on-screen graphs to learn about linear equations, the motion of objects, population dynamics, global warming, or other STEM topics that use scatter plots or line graphs. Teachers and students may also use and share existing activities, which are released under a Creative Commons license (see http://www.concord.org/projects/smartgraphs#curriculum).

Project Email: 
Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0918522
Funding Period: 
Sat, 08/15/2009 to Tue, 07/31/2012
Project Evaluator: 
Sigmund Abeles
Full Description: 

SmartGraphs is a project that studies the educational value of digital objects embedded in graphs that “know” about themselves and that provide scaffolding to students to help them learn about graphs and the concepts conveyed in graphs. As planned, digital Smart Graphs can be authored or customized by teachers and accept inputs from students’ responses, sketches, functions, models, and probes. The software analyzes the graphs for the kinds of features that experts recognize and then engages students in conversations that instruct and assess student knowledge.

The project is guided by collaboration between the Concord Consortium and the Pennsylvania State Department of Education Classrooms for the Future program, through which 140,000 laptop computers are deployed to serve 500,000 students. The development of Smart Graphs is based on extensive prior research about students’ use and understanding of graphs (TEEMSS II and Science Universal Design for Learning projects) at the Concord Consortium.

Pages

Subscribe to Middle School