High School

Fourteenth International Congress on Mathematical Education (ICME14) Travel Grant

This project will support the participation of 53 US K-12 mathematics teachers, graduate students, community college/university mathematicians, mathematics teacher educators, and mathematics education researchers to attend the Fourteenth International Congress for Mathematical Education (ICME-14) in Shanghai, China.

Project Email: 
Lead Organization(s): 
Award Number: 
1908084
Funding Period: 
Sun, 09/01/2019 to Mon, 02/28/2022
Project Evaluator: 
Full Description: 

This project will support the participation of 53 US K-12 mathematics teachers, graduate students, community college/university mathematicians, mathematics teacher educators, and mathematics education researchers to attend the Fourteenth International Congress for Mathematical Education (ICME-14) to be held in Shanghai, China July 9-16, 2020. While mathematics education in the United States has its own culture and expectations, the work and conversations of mathematics educators across the world might contribute to our understanding of issues facing our community today such as curriculum development, the use of technology, strategies for reaching all students, teacher education and professional development. The questions we have as a nation about our own mathematics education might be informed and enlightened by international conversations with others confronting similar issues. A research team led by Sharon McCrone, University of New Hampshire, will prepare a 2020 Fact Book on US mathematics education, building on reports for prior ICMEs. The travel grant will increase the number and diversity of the US mathematics education community attending the international congress, which will enable a broader representation from the US to benefit from interaction with the world's leading mathematics educators.

Through a careful selection process, experts in the field will identify travel recipients most likely to benefit from attending ICME-14 and well-positioned to disseminate insights from their experience. Fostering understanding of international issues and practices among educators and researchers in the US may enhance their capacity to take an informed, global perspective in their work, which, in turn, may benefit their local communities. Digital media will allow educators and classrooms to make and maintain contact across the world, enabling ICME-14 grantees to maintain connections initiated at the meeting and have an impact on large numbers of school children and teachers, both preservice and practicing, in the US. At ICME-14 these educators will engage in learning about the "state of the art" with respect to research and practice in mathematics education from a wide variety of perspectives and will be able to discuss common challenges in teaching and learning mathematics.

Alternative video text
Alternative video text: 

PBS NewsHour Student Reporting Labs StoryMaker: STEM-Integrated Student Journalism

In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. The project aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people.

Project Email: 
Award Number: 
1908515
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
Full Description: 

PBS NewsHour's Student Reporting Labs (SRL) is a youth journalism program that creates transformative educational experiences through video production and community engagement. The program aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people. In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. SRL StoryMaker:STEM will be a free, self-directed online curriculum delivery system designed to guide educators working with middle and high school-age students through videojournalism experiences that highlight and integrate STEM skills, concepts, issues, and potential solutions into the learning process. This program will also develop mentoring connections with 40 journalism professionals and STEM professionals to provide supports for participating teachers and students. The project will recruit and work with about 100 teachers and their students over the course of the project to inform, test, implement and provide feedback on the SRL StoryMaker:STEM platform and resources. The associated research will explore evidence-based strategies for structuring co-learning and mentorship connections for students and teachers with journalists and science content experts around SRL StoryMaker:STEM to best support student and teacher outcomes.

The four-year associated research study will contribute to understanding how teachers collaborate on teaching STEM across academic disciplines through a series of interviews, surveys, and site visits with the pilot teachers and their students using SRL StoryMaker:STEM. The analysis of the data will focus on identifying the benefits of developing a community of teachers who collaborate on teaching STEM across the academic discipline through journalism practice. Specifically, a combination of quantitative and qualitative methods will be used to examine the following research questions: What teacher affordances are necessary for using journalism practices to support STEM learning across academic disciplines? How do teacher perceptions of their school constraints influence their use of STEM-based learning activities? How do teachers from different disciplines teach numerical reasoning, communicating with data, and the other essential STEM thinking skills? How might an online support community be structured to encourage teacher-to-teacher scaffolding related to STEM content given variation in their pedagogical training? Meanwhile, front-end evaluation will identify barriers and opportunities specific to this project. Formative evaluation will focus on how each specific iteration is meeting teachers' needs and aspirations, and summative evaluation will examine teachers' STEM learning and teachers' perception of students' STEM outcomes.

Alternative video text
Alternative video text: 

Looking Back and Looking Forward: Increasing the Impact of Educational Research on Practice

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

Lead Organization(s): 
Award Number: 
1941494
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The focus of the proposed conference is to carefully examine past and current research with an eye toward improving its impact on practice. This conference is designed to create concrete steps that could shape the nature and impact of mathematics education research for years to come. A diverse group of 50 participants will be invited to participate. Participants include 10 experienced K-12 educators whose perspectives will be used to anchor the conference in problems of practice. Other participants represent senior through more junior scholars who have demonstrated a commitment to addressing the disconnect between research and practice, along with technology experts to advise participants on capabilities and innovative uses of modern technologies for instruction, assessment and data management.

The overarching goal for the conference is to help the field of mathematics education think deeply about the most productive ways to answer the following questions: [1] Why hasn't past research had a more direct impact on practice? What can be learned from this historical analysis for future research? [2] What is a possible vision for research that would have a more direct impact on practice? What questions should be asked? What methods should be used? What concrete steps can be taken to launch the new research programs? [3] What are the implications of adopting new kinds of research programs? If they gain traction, how will such changes affect the broader education community and infrastructure, including preservice teacher education, teacher professional development, and the training of future researchers? How should the roles of researchers and teachers change? What incentive structures might motivate these changes? How will new programs of research interact with existing programs?

Fusing Equity and Whole-School STEM Models: A Conference Proposal

This project will plan, implement, and evaluate the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level.

Project Email: 
Lead Organization(s): 
Award Number: 
1907751
Funding Period: 
Thu, 08/01/2019 to Fri, 07/31/2020
Project Evaluator: 
Full Description: 

Interest in whole-school STEM education models is rapidly expanding in the United States, but there is limited agreement on the essential features of effective STEM schools and a limited research base on effective practices. There are also concerns regarding equity issues associated with whole-school STEM models. This project will address these issues by planning, implementing, and evaluating the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level. The conference will include 25 invited participants who have expertise as researchers or practitioners in equity issues or whole-school STEM reform efforts. These participants will discuss how to: 1) Create a collective understanding among a community of stakeholders regarding the role of equity in whole-school STEM models, 2) Map, synthesize, and report the terrain of existing research around the role of equity in whole-school STEM and non-STEM models including both strengths and gaps in the research base, and 3) Identify central issues and questions that can guide future research in order to prioritize these topics and initiate productive collaborations among participants to pursue answers to critical questions. These discussions will result in two key outcomes: 1) A practitioner centered logic model that integrates equity into the design and implementation of STEM at the whole-school level, and 2) A research model that supports building an empirical understanding of the intersection between equity and whole-school STEM programs.

There are various models of STEM-centered schools, with the most significant difference across models being the enrollment criteria. This project will focus on Inclusive STEM Schools which have open enrollment and provide paths for all students to advanced learning or careers in STEM fields. Federal initiatives have promoted and supported expansion of these schools, but there is little research on the impacts of these schools, and even less research on the role of equity considerations on the design and implementation of these schools. This project will address the limited research base by focusing specifically on culturally relevant and culturally responsive programing for inclusive STEM schools and initiating a research agenda on the role of equity in designing inclusive STEM programs. The project will seek to identify effective practices, and document outcomes on diverse populations.

Alternative video text
Alternative video text: 

Crowdsourcing Neuroscience: An Interactive Cloud-based Citizen Science Platform for High School Students, Teachers, and Researchers

This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.

Lead Organization(s): 
Award Number: 
1908482
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include engaging students in the practices of science as well as the ideas of science. This project will address this priority by developing a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms. Before students and teachers initiate their own studies using the system, they will participate in existing research studies by contributing their own data and collaborating with researchers using the online, interactive system. When experienced with the system, students and teachers will become researchers by developing independent investigations and uploading them to the interactive platform. Both student-initiated and scientist-initiated proposals will be submitted to the platform, peer-reviewed by students and scientists, revised, and included in the online experimental bank. In addition to conducting their own studies using the platform, scientists will act as educators and mentors by populating the experiment bank with studies that can serve as models for students and provide science content for the educational resource center. This online system addresses a critical need in science education to involve students more fully and authentically in scientific inquiry where they gain experience in exploring the unknown rather than confirming what is already known.

This early stage design and development study is guided by three goals: 1) Develop an open-science citizen science platform for conducting human brain and behavior research in the classroom, 2) Develop a remote neuroscience Student-Teacher-Scientists (STS) partnership program for high schools, and 3) Evaluate the design, development, and implementation of the program and its impacts on students and tachers. In developing this project, the project team will link two quickly emerging trends, one in science education, and one in the sciences. Consistent with current priorities in science education, the project will engage students and their teachers in authentic, active inquiry where they learn scientific practices by using them to conduct authentic inquiry where a search for knowledge is grounded in finding evidence-based answers to original questions. On the science side, students and their science partners will participate in an open science approach by pre-registering their research and committing to an analysis plan before data are collected. In this project, students will primarily be using reaction time and online systems to do research that includes study of their own brain function. The project research is guided by three research questions. How does an online citizen neuroscience STS platform: a) impact students' understanding of, and abilities to apply neuroscience and experimental design concepts? b) Impact students' interests in, and attitudes toward science, including an awareness of science careers and applications? and c) Affect teachers' attitudes towards neuroscience teaching, and the use of inquiry-based strategies? A design-based research approach will be used to iteratively design a sustainable and scalable inquiry-based neuroscience curriculum with teachers as design partners.

Human Variance and Assessment for Learning Implications for Diverse Learners of STEM: A National Conference

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests.

Lead Organization(s): 
Award Number: 
1939192
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The conference purpose is to stimulate a national conversation concerning the relationships between assessment, teaching and learning that include scholarly research and development of tests; members of city and state boards of education; officials from states and major school systems; policymakers; and representatives of teachers' associations and parents' associations. This conference aims to attract these important professionals has important co-sponsors like the Urban Institute. This national conference flows from the work of the Gordon Commission on the Future of Assessment for Education that addressed the advancement of achievement in STEM disciplines (PreK-12) for students who are underrepresented among high achieving students. This issue of advancement of underrepresented high achieving students has received little concentrated effort and a conference would help in providing greater understanding of this special concern, which includes a student in poverty in complexed family structures.

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests. The conference will stimulate national conversation and ultimately a market that demands educational assessments that inform and improve teaching and learning transactions. The conference will be organized around four conceptual and theoretical papers that focus on the knowledge base upon which six concurrent workshops will be based. The four papers are: (1) Human Diversity and Assessment; (2) The Limits of Test Bias and Its Corrections; (3) Towards an Assessment Science Capable of Informing and Improving Learning; and  (4) Assessment in the Service of Learning. The workshops will focus on models of pedagogical practice that show promise for informing and improving teaching and learning processes and their outcomes. These issues will be discussed by 11-15 expert presenters who understand student learning and the types of information gleaned from different types of assessments. The attention to URMs and their needs and contexts are prioritized in discussions surrounding measurement science and the integration of assessment. Several important issues that address understanding of student learning, and the relationship between the varieties of information concerning students that can be accessed through assessments are: (1) The importance of the broader and more productive use of educational testing to improve the learning of STEM subject matter and values; (2) Curriculum embedded assessment and the reduction in disparities in achievement by STEM learners from diverse social divisions; (3) Innovative procedures and programs for the use of data concerning learners and teaching and learning transactions in the teaching and learning of STEM with learners who are underrepresented among high achieving STEM learners.

Advancing Coherent and Equitable Systems of Science Education

This project will examine how partnerships among state science leaders, education researchers and education practitioners cultivate vertical coherence and equity in state science education.

Lead Organization(s): 
Award Number: 
1920249
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

This project will examine how partnerships among state science leaders, education researchers and education practitioners cultivate vertical coherence and equity in state science education. This is an important study because in most states, the student population is becoming more diverse, and states need help in finding ways to better serve schools and districts within their jurisdictions. Through this effort, state science leaders will participate in a networked improvement community model organized to develop and test state-level strategies. Specifically, the focus will be on the adaptation of instructional materials and formative assessment as linked policy strategies for aligning curriculum, instruction, and assessment and for relating instruction to the interests and histories of local communities. State science leaders and researchers will investigate how and under what conditions certain strategies support the emergence of coherent and equitable state systems of science education in which all students have opportunities to meet challenging new science standards. The project will build knowledge and theory about the conditions under which a network of state teams can promote coherent guidance for culturally-based instruction in local districts and schools. Together the partners will collaborate to diagnose current challenges to promoting coherence and equity and then develop knowledge and resources about conditions that promote coherence and equity by testing and studying strategies for cultivating it.

An iterative design-based research approach will be used to build foundational knowledge for the equitable implementation of the vision of science and engineering learning that integrates disciplinary core ideas, science and engineering practices, and crosscutting concepts working from a cultural perspective on learning. A multiple-case study will be used to collect data about the impact of the networked improvement community model on leadership development to effectively improve state efforts. Surveys and interviews will be used to gather information on co-designing efforts, use and adaptation of resources, and knowledge gained by state science leaders. Data will also be collected on political conditions and infrastructures of teamwork as potential facilitators and barriers to the development of strategic knowledge leadership. Analyses of data will identify patterns or configurations of conditions associated with growth in science leaders' strategic knowledge leadership related to equity. This technique will generate evidence-based claims for how and when supports and barriers matter for growth in strategic knowledge leadership for equity.

Spanning Boundaries: A Statewide Network to Support Science Teacher Leaders to Implement Science Standards

This project will develop and test a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1907460
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include building strong professional learning communities that foster ongoing professional growth among teachers, teacher leaders, and school administrators. This project responds to these priorities by developing and testing a two-year professional development model for secondary school science teacher leaders that will help them support their colleagues in implementing the Next Generation Science Standards (NGSS). The new model for professional learning combines three key elements: 1) Focusing on teacher leaders who can interpret, translate, and incorporate new approaches and resources into local contexts, 2) Engaging the expertise of informal science education specialists who are well versed in teacher professional learning and experiential approaches to learning, and 3) Establishing a statewide network of peers who can share experiences beyond individual school and district contexts. By developing a geographically-distributed network of support for science teacher leaders, the project is poised to create more equitable access to high quality professional learning opportunities for teachers as well as provide much needed support to the disproportionate number of novice teachers in schools with high populations of historically underrepresented students in science.

This early stage design and development project is guided by two research questions: 1) How do teacher leaders utilize structures, practices, and tools within an informal science institution-based network to interpret, filter, and translate available resources into professional learning supports for localized implementation of phenomena-based instruction? And 2) How do the professional learning supports developed by teacher leaders become more aligned with best practices for professional development (e.g., active learning, sustained, coherent, collaborative, and content-based) and incorporate aspects of informal learning (e.g., choice and experiential learning) throughout their participation in an ISI-based network? The project will engage two cohorts of 25 middle and high school science teacher leaders in overlapping two-year, one-week summer institutes, and a minimum of 12 online meetings during the academic years. The 30-hour summer institutes will be designed to address the multiple roles of teacher leaders as learners, classroom teachers, and teacher professional development providers. To sustain professional development across the academic year, monthly two-hour online meetings will be used to nurture the community of practice. Some sessions will focus on leadership and topics related to the NGSS, and other sessions will focus on deepening science content knowledge. The sources of data to be used in addressing the research questions include: 1) Video recordings, field notes of observations, and artifacts of professional development meetings, 2) Interviews with teacher leaders, and 3) Journal entries and artifacts from professional development sessions implemented by teacher leaders.  

Science Coordinators Advancing a Framework for Outstanding Leadership Development

This project will develop and test a professional development program designed for school district science coordinators by examining impacts of participating coordinators on science teachers and their students.

Lead Organization(s): 
Award Number: 
1908431
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in formal science education include building strong professional learning communities that foster ongoing professional growth among teachers, teacher leaders, and school administrators. This project responds to these priorities by developing and testing a professional development program designed for school district science coordinators. Though these science coordinators typically have some degree of responsibility for supporting science teachers in their school districts, most individuals appointed to these leadership positions have little or no formal preparation for the role. The range of duties assigned to science coordinators varies greatly from district to district, but duties typically include mentoring teachers, selecting curriculum materials, overseeing science supplies and classroom safety, and advocating for science program improvements. The professional development model being designed and developed by this project will be tested by examining impacts of participating science coordinators on science teachers and their students.

The goal of this four-year exploratory study is to determine if a specialized professional development program for district science coordinators can facilitate their growth as instructional leaders and the instructional practices of science teachers of their school districts. More specifically, the project will pursue answers to two research questions: 1) How, if at all, does the professional development model impact the knowledge, practices, and work of the science coordinators? and 2) How, if at all, do participating science coordinators impact the practices of science teachers who are implementing the Next Generation Science Standards? A design-based research approach will be employed to develop a two-year professional development model having 80 hours of programming during the first year, and 30 hours during the second year. Programming will include a blend of face-to-face and online meetings and modules. The mixed-methods research plan will compare teaching and learning outcomes within three groups: 1) The treatment groups consisting of science coordinators who participated in the professional development program, and the science teachers with whom they work, 2) A comparison group of science coordinators who did not participate in the professional development program and the teachers with whom they work, and 3) A comparison group consisting of science teachers who do not have direct access to a science coordinator. Quantitative data will be gathered through use of instruments that measure how science coordinators develop their knowledge and practices, and how they modify their perspectives as leaders. Observations of the classroom practices of teachers will also be documented. The qualitative research component will include interviews, examination of artifacts, and focus groups.

STEM for All Collaboratory: Accelerating Dissemination and Fostering Collaborations for STEM Educational Research and Development

This project will capitalize on the STEM for All Video Showcase and extend its impact by creating a STEM for All Multiplex. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts.

Lead Organization(s): 
Award Number: 
1922641
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

The STEM for All Collaboratory will advance educational research and development through the creation and facilitation of two related and interactive platforms: the STEM for All Video Showcase, and the STEM for All Multiplex. The Video Showcase provides an annual, online, week-long, interactive event where hundreds of educational researchers and developers create, share, and discuss 3-minute videos of their federally funded work to improve Science, Mathematics, Engineering, Technology and Computer Science education. Several years of successful Video Showcases have contributed to a rich database of videos showcasing innovative approaches to STEM education. To capitalize on the growing resource and extend its impact, this project will create a STEM for All Multiplex, a unique contribution to STEM education. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts. The Multiplex will host interactive, monthly, thematic online events related to emerging research and practices to improve STEM and Computer Science education in formal and informal environments. Each thematic event will include selected video presentations, expert panels, resources, interactive discussions and a synthesis of lessons learned. All events will be accessible and open to the public. The project will continue to host and facilitate the annual Video Showcase event which has attracted over 70,000 people from over 180 countries over the course of a year. This effort will be guided by a collaboration with NSF resource centers, learning networks, and STEM professional organizations, and will advance the STEM research and education missions of the 11 collaborating organizations.

The Video Showcase and the Multiplex will foster increased dissemination of federally funded work and will effectively share NSF's investments aimed at improving STEM education. It will enable presenters to learn with and from each other, offering and receiving feedback, critique, and queries that will improve work in progress and to facilitate new collaborations for educational research. It will connect researchers with practitioners, enabling both groups to benefit from each other's knowledge and perspective. Further, it will connect seasoned investigators with aspiring investigators from diverse backgrounds, including those from Minority Serving Institutions. It will thereby enable new researchers to broaden their knowledge of currently funded efforts while also providing them with the opportunity to discuss resources, methodology and impact measures with the investigators. Hence, the project has the potential to broaden the future pool of investigators in STEM educational research. This work will further contribute to the STEM education field through its research on the ways that this multimedia environment can improve currently funded projects, catalyze new efforts and collaborations, build the capacity of emerging diverse leadership, and connect research and practice.

Pages

Subscribe to High School