Student Attitudes/Beliefs

CAREER: Algebraic Knowledge for Teaching: A Cross-Cultural Perspective

The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. This study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance.

Lead Organization(s): 
Award Number: 
1350068
Funding Period: 
Fri, 08/15/2014 to Fri, 07/31/2020
Full Description: 

What content knowledge is needed for the teaching of mathematics? What practices are more effective for realizing student success? These questions have received considerable attention in the mathematics education community. The goal of this CAREER program of research is to identify, from a cross-cultural perspective, essential Algebraic Knowledge for Teaching (AKT) that will enable elementary teachers to better develop students' algebraic thinking. Focusing on two fundamental mathematical ideas recently emphasized by the Common Core State Standards - inverse relations and properties of operations - this study explores AKT based on integrated insights of the U.S. and Chinese expert teachers' classroom performance. It will be focused on three objectives: (1) identify AKT that facilitates algebraic thinking and develop preliminary findings into teaching materials; (2) refine research-based teaching materials based on the evaluative data; and (3) integrate research with education through course development at Temple University and teacher outreach in Philadelphia.

The model underlying this research program is that improved pedagogy will improve student learning, both directly and indirectly. A design-based research method will be used to accomplish objectives #1 and #2. Cross-cultural videotaped lessons will be first analyzed to identify AKT, focusing on teachers' use of worked examples, representations, and deep questions. This initial set of findings will then be developed into teaching materials. The U.S. and Chinese expert teachers will re-teach the lessons as part of the refinement process. Data sources will include: baseline and updated survey data (control, context, and process variables), observation, documents, videos, and interviews. The statistical techniques will include descriptive and inferential statistics and HLM will to address the hierarchical nature of the data.

This project involves students and teachers at various levels (elementary, undergraduate, and graduate) at Temple University and the School District of Philadelphia (SDP) in the U.S. and Nanjing Normal University and Nantong School District in China. A total of 600 current and future elementary teachers and many of their students will benefit directly or indirectly from this project. Project findings will be disseminated through various venues. Activities of the project will promote school district-university collaboration, a novice-expert teacher network, and cross-disciplinary and international collaboration. It is anticipated that the videos of expert teaching will also be useful future research by cognitive researchers studying ways to improve mathematics learning.

Publications
G indicates graduate student author; U indicates undergraduate student author

Journal Articles in English

  1. Ding, M., G Chen, W., & G Hassler, R. (2019). Linear quantity models in the US and Chinese elementary mathematics classrooms. Mathematical Thinking and Learning, 21, 105-130 doi: 10.1080/10986065.2019.1570834 . PDF
  2. Barnett, E., & Ding, M. (2019). Teaching of the associative property: A natural classroom investigation. Investigations of Mathematics Learning, 11, 148-166. doi: 10.1080/19477503.2018.1425592  PDF
  3. Ding, M., & G Heffernan, K. (2018). Transferring specialized content knowledge to elementary classrooms: Preservice teachers’ learning to teach the associative property. International Journal of Mathematics Educational in Science and Technology, 49, 899-921.doi: 10.1080/0020739X.2018.1426793 PDF
  4. Ding, M. (2018). Modeling with tape diagrams. Teaching Children Mathematics25, 158-165. doi: 10.5951/teacchilmath.25.3.0158  PDF
  5. G Chen, W., & Ding, M.* (2018). Transitioning from mathematics textbook to classroom instruction: The case of a Chinese expert teacher. Frontiers of Education in China, 13, 601-632. doi: 10.1007/s11516-018-0031-z (*Both authors contributed equally). PDF
  6. Ding, M., & G Auxter, A. (2017). Children’s strategies to solving additive inverse problems: A preliminary analysis. Mathematics Education Research Journal, 29, 73-92. doi:10.1007/s13394-017-0188-4  PDF
  7. Ding, M. (2016).  Developing preservice elementary teachers’ specialized content knowledge for teaching fundamental mathematical ideas: The case of associative property. International Journal of STEM Education, 3(9), 1-19doi: 10.1186/s40594-016-0041-4  PDF
  8. Ding, M. (2016). Opportunities to learn: Inverse operations in U.S. and Chinese elementary mathematics textbooks. Mathematical Thinking and Learning, 18, 45-68. doi: 10.1080/10986065.2016.1107819  PDF

Journal Articles in Chinese
Note: The Chinese journals Educational Research and Evaluation (Elementary Education and Instruction教育研究与评论 (小学教育教学) and Curriculum and Instructional Methods (课程教材教法) are both official, core journals in mathematics education field in China.

  1. Chen, W. (2018). Strategies to deal with mathematical representations – an analysis of expert’s classroom instruction. Curriculum and Instructional Methods. 数学教学的表征处理策略——基于专家教师的课堂教学分析. 课程教材教法. PDF
  2. Ma, F. ( 2018) – Necessary algebraic knowledge for elementary teachers- an ongoing cross-cultural study. Educational Research and Evaluation (Elementary Education and Instruction), 2, 5-7.  小学教师必备的代数学科知识-跨文化研究进行时。教育研究与评论 (小学教育教学), 2, 5-7. PDF
  3. Chen, J. (2018) Infusion and development of children’s early algebraic thinking – a comparative study of the US and Chinese elementary mathematics teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 8-13.  儿童早期代数思维的渗透与培养-中美小学数学教学比较研究。教育研究与评论(小学教育教学),28-13.  PDF
  4. Zong, L. (2018). A comparative study on the infusion of inverse relations in the US and Chinese classroom teaching. Educational Research and Evaluation (Elementary Education and Instruction), 2, 14-19.  中美逆运算渗透教学对比研究。教育研究与评论(小学教育教学,2,14-19.  PDF
  5. Wu, X. (2018). Mathematical representations and development of children’s mathematical thinking: A perspective of US-Chinese comparison. Educational Research and Evaluation (Elementary Education and Instruction), 2, 20-24.  数学表征与儿童数学思维发展-基于中美比较视角。教育研究与评论(小学教育教学,2, 20-24.  PDF

Dissertations

  1. Hassler, R. (2016). Mathematical comprehension facilitated by situation models: Learning opportunities for inverse relations in elementary school.Published dissertation, Temple University, Philadelphia, PA. (Chair: Dr. Meixia Ding)  PDF
  2. Chen, W. (2018). Elementary mathematics teachers’ professional growth: A perspectives of TPACK (TPACK 视角下小学数学教师专业发展的研究). Dissertation, Nanjing Normal University. Nanjing, China. PDF

National Presentations
G indicates graduate student author; U indicates undergraduate student author

  • Ding, M (symposium organizer, 2019, April). Enhancing elementary mathematics instruction: A U.S.-China collaboration. Papers presented at NCTM research conference (Discussant: Jinfa Cai). (The following three action research papers were written by my NSF project teachers under my guidance).
      • Milewski Moskal, M., & Varano, A. (2019). The teaching of worked examples: Chinese approaches in U.S. classrooms. Paper 
      • Larese, T., Milewski Moskal, M., Ottinger, M., & Varano, A., (2019). Introducing Investigations math games in China: Successes and surprises. Paper
      • Murray, D., Seidman, J., Blackmon, E., Maimon, G., & Domsky, A. (2019). Mathematic instruction across two cultures: A teacher perspective. Paper
    • Ding, M., & Ying Y. (2018, June). CAREER: Algebraic knowledge for teaching: A cross-cultural perspective. Poster presentation at the National Science Foundation (NSF) PI meeting, Washington, DC.  Poster
    • Ding, M., Brynes, J., G Barnett, E., & Hassler, R. (2018, April). When classroom instruction predicts students’ learning of early algebra: A cross-cultural opportunity-propensity analysis. Paper presented at 2018 AERA conference. New York, NY.  Paper
    • Ding, M., Li, X., Manfredonia, M., & Luo, W. (2018, April). Video as a tool to support teacher learning: A Cross-cultural analysis. Paper presented at 2018 NCTM conference. Washington, DC.  PPT
    • GBarnett, E., & Ding, M. (2018, April). Teaching the basic properties of arithmetic: A natural classroom investigation of associativity. Poster presentation at 2018AERA conference, New York, NY.  Poster
    • Hassler, R., & Ding, M. (2018, April). The role of deep questions in promoting elementary students’ mathematical comprehension. Poster presentation at 2018AERA conference, New York, NY.
    • Ding, M., G Chen, W., G Hassler, R., Li, X., & G Barnett, E. (April, 2017). Comparisons in the US and Chinese elementary mathematics classrooms. Poster presentation at AERA 2017 conference (In the session of “Advancing Mathematics Education Through NSF’s DRK-12 Program”). San Antonio, TX. Poster
    • Ding, M., Li, X., G Hassler, R., & G Barnett, E. (April, 2017). Understanding the basic properties of operations in US and Chinese elementary School. Paper presented at AERA 2017 conference. San Antonio, TX.  Paper
    • Ding, M., G Chen, W., & G Hassler, R. (April, 2017). Tape diagrams in the US and Chinese elementary mathematics classrooms. Paper presented at NCTM 2017 conference. San Antonio, TX.  Paper
    • Ding, M., & G Hassler, R. (2016, June). CAREER: Algebraic knowledge for teaching in elementary school: A cross-cultural perspective. Poster presentation at the NSF PI meeting, Washington, DC. Poster
    • Ding, M. (symposium organizer, 2016, April). Early algebraic in elementary school: A cross-cultural perspective. Proposals presented at 2016 AERA conference, Washington, DC.
        • Ding, M. (2016, April). A comparative analysis of inverse operations in U.S. and Chinese elementary mathematics textbooks. Paper 
        • G Hassler, R. (2016, April). Elementary Textbooks to Classroom Teaching: A Situation Model Perspective. Paper
        • G Chen, W., & Ding, M. (2016, April). Transitioning textbooks into classroom teaching: An action research on Chinese elementary mathematics lessons. Paper
        • Li, X., G Hassler, R., & Ding, M. (2016, April). Elementary students’ understanding of inverse relations in the U.S. and China.  Paper
        • Stull, J., Ding, M., G Hassler, R., Li, X., & U George, C. (2016, April). The impact of algebraic knowledge for teaching on student learning: A Preliminary analysis. Paper
      • Ding, M., G Hassler, R., Li., X., & G Chen, W. (2016, April). Algebraic knowledge for teaching: An analysis of US experts' lessons on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA. Paper
      • G Hassler. R., & Ding, M. (2016, April). Situation model perspective on mathematics classroom teaching: A case study on inverse relations. Paper presented at 2016 NCTM conference, San Francisco, CA.  Paper
      • Ding, M., & G Copeland, K. (2015, April). Transforming specialized content knowledge: Preservice elementary teachers’ learning to teach the associative property of multiplication. Paper presented at AERA 2015 conference, Chicago, IL. Paper PPT
      • Ding, M., & G Auxter, A. (2015, April). Children’s strategies to solving additive inverse problems: A preliminary analysis. Paper presented at AERA 2015 conference, Chicago, IL.  Paper

      Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Staudt)

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

      Lead Organization(s): 
      Award Number: 
      1417722
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

      The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

      Learning about Ecosystems Science and Complex Causality through Experimentation in a Virtual World

      This project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, and will develop ways for students to conduct experiments within the virtual world and to see the results of those experiments.

      Project Email: 
      Lead Organization(s): 
      Award Number: 
      1416781
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      EcoXPT from videohall.com on Vimeo.

      Comprehending how ecosystems function is important knowledge for citizens in making decisions and for students who aspire to become scientists. This understanding requires deep thinking about complex causality, unintended side-effects, and the strengths and limitations of experimental science. These are difficult concepts to learn due to the many interacting components and non-linear interrelationships involved. Ecosystems dynamics is particularly difficult to teach in classrooms because ecosystems involve complexities such as phenomena distributed widely across space that change over long time frames. Learning when and how experimental science can provide useful information in understanding ecosystems dynamics requires moving beyond the limited affordances of classrooms. The project will: 1) advance understanding of experimentation in ecosystems as it can be applied to education; 2) show how student learning is affected by having opportunities to experiment in the virtual world that simulate what scientists do in the real world and with models; and 3) produce results comparing this form of teaching to earlier instructional approaches. This project will result in a learning environment that will support learning about the complexities of the earth's ecosystem.

      The project will build upon a computer world called EcoMUVE, a Multi-User Virtual Environment or MUVE, developed as part of an earlier NSF-funded project. A MUVE is a simulated world in which students can virtually walk around, make observations, talk to others, and collect data. EcoMUVE simulates a pond and a forest ecosystem. It offers an immersive context that makes it possible to teach about ecosystems in the classroom, allowing exploration of the complexities of large scale problems, extended time frames and and multiple causality. To more fully understand how ecosystems work, students need the opportunity to experiment and to observe what happens. This project will advance this earlier work by developing ways for students to conduct experiments within the virtual world and to see the results of those experiments. The project will work with ecosystem scientists to study the types of experiments that they conduct, informing knowledge in education about how ecosystem scientists think, and will build opportunities for students that mirror what scientists do. The project will develop a modified virtual world and accompanying curriculum for middle school students to help them learn to more deeply understand ecosystems patterns and the strengths and limitations of experimentation in ecosystems science. The resulting program will be tested against existing practice, the EcoMUVE program alone, and other programs that teach aspects of ecosystems dynamics to help teachers know how to best use these curricula in the classroom.

      Teaching Environmental Sustainability - Model My Watershed (Collaborative Research: Kerlin)

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education.

      Lead Organization(s): 
      Award Number: 
      1418133
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Project Evaluator: 
      Education Design
      Full Description: 

      This project will develop curricula for environmental/geoscience disciplines for high-school classrooms. It will teach a systems approach to problem solving through hands-on activities based on local data and issues. This will provide an opportunity for students to act in their communities while engaging in solving problems they find interesting, and require synthesis of prior learning. The Model My Watershed (MMW) v2 app will bring new environmental datasets and geospatial capabilities into the classroom, to provide a cloud-based learning and analysis platform accessible from a web browser on any computer or mobile device, thus overcoming the cost and technical obstacles to integrating Geographic Information System technology in secondary education. It will also integrate new low-cost environmental sensors that allow students to collect and upload their own data and compare them to data visualized on the new MMW v2. This project will transform the ability of teachers throughout the nation to introduce hands-on geospatial analysis activities in the classroom, to explore a wide range of geographic, social, political and environmental concepts and problems beyond the project's specific curricular focus.

      The Next Generation Science Standards state that authentic research experiences are necessary to enhance STEM learning. A combination of computational modeling and data collection and analysis will be integrated into this project to address this need. Placing STEM content within a place- and problem-based framework enhances STEM learning. Students, working in groups, will not only design solutions, they will be required to defend them within the application portal through the creation of multimedia products such as videos, articles and web 2.0 presentations. The research plan tests the overall hypothesis that students are much more likely to develop an interest in careers that require systems thinking and/or spatial thinking, such as environmental sciences, if they are provided with problem-based, place-based, hands-on learning experiences using real data, authentic geospatial analysis tools and models, and opportunities to collect their own supporting data. The MMW v2 web app will include a data visualization tool that streams data related to the modeling application. This database will be modified to integrate student data so teachers and students can easily compare their data to data collected by other students and the government and research data. All data will be easily downloadable so that students can increase the use of real data to support the educational exercises. As a complement to the model-based activities, the project partners will design, manufacture, and distribute a low-cost environmental monitoring device, called the Watershed Tracker. This device will allow students to collect real-world data to enhance their understanding of watershed dynamics. Featuring temperature, light, humidity, and soil moisture sensors, the Watershed Tracker will be designed to connect to tablets and smartphones through the audio jack common to all of these devices.

      Supporting Secondary Students in Building External Models (Collaborative Research: Damelin)

      This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. 

      Lead Organization(s): 
      Award Number: 
      1417809
      Funding Period: 
      Fri, 08/01/2014 to Tue, 07/31/2018
      Full Description: 

      The Concord Consortium and Michigan State University will collaborate to: (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. By iteratively designing, developing and testing a modeling tool and instructional materials that facilitate the building of dynamic models, the project will result in exemplary middle and high school materials that use a model-based approach as well as an understanding of the potential of this approach in supporting student development of explanatory frameworks and modeling capabilities. A key goal of the project is to increase students' learning of science through modeling and to study student engagement with modeling as a scientific practice. 

      The project provides the nation with middle and high school resources that support students in developing and using models to explain and predict phenomena, a central scientific and engineering practice. Because the research and development work will be carried out in schools in which students typically do not succeed in science, the products will also help produce a population of citizens capable of continuing further STEM learning and who can participate knowledgeably in public decision making. The goals of the project are to (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building, using, and revising models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. Using a design-based research methodology, the research and development efforts will involve multiple cycles of designing, developing, testing, and refining the systems modeling tool and the instructional materials to help students meet important learning goals related to constructing dynamic models that align with the Next Generation Science Standards. The learning research will study the effect of working with external models on student construction of robust explanatory conceptual understanding. Additionally, it will develop a set of professional development resources and teacher scaffolds to help the expanding community of teachers not directly involved in the project take advantage of the materials and strategies for maximizing the impact of the curricular materials.

      Science in the Learning Gardens (SciLG): Factors that Support Racial and Ethnic Minority Students’ Success in Low-Income Middle Schools

      Science in the Learning Gardens (SciLG) designs and implements curriculum aligned with Next Generation Science Standards (NGSS) and uses school gardens as learning contexts in grade 6 (2014-2015), grade 7 (2015-2016) and grade 8 (2016-2017) in two low-income urban schools. The project investigates the extent to which SciLG activities predict students’ STEM identity, motivation, learning, and grades in science using a theoretical model of motivational development.

      Lead Organization(s): 
      Partner Organization(s): 
      Award Number: 
      1418270
      Funding Period: 
      Mon, 09/01/2014 to Thu, 08/31/2017
      Full Description: 

      Science in the Learning Gardens (SciLG) will use school gardens as the context for learning at two low-income middle schools with predominantly racial and ethnic minority students in Portland, Oregon. There are thousands of gardens flourishing across the country that are underutilized as contexts for active engagement in the middle grades. School gardens provide important cultural contexts while addressing environmental and food issues. SciLG will bring underrepresented youth into gardens at a critical time in their intellectual development to broaden the factors that support motivation to pursue STEM careers and educational pathways. The project will adapt, organize, and align two disparate sets of existing resources into the project curriculum: 6th grade science curriculum resources, and garden-based lessons and units. The curriculum will be directly aligned with the Next Generation Science Standards (NGSS). 

      The project will use a design-based research approach to refine instruction and formative assessment, and to investigate factors for student success in science proficiency and their motivational engagement in relation to the garden curriculum. The curriculum will be pilot-tested during the first year of the project in five sixth-grade classes with 240 students in Portland Public Schools. Students will be followed longitudinally in grades 7 and 8 in years 2 and 3 respectively, as curricular integration continues. The research team will support participating teachers each year in using their schools' gardens, and study how this context can serve as an effective pedagogical strategy for NGSS-aligned science curriculum. Academic learning will be measured by assessments of student progress towards the end of middle-school goals defined by NGSS. Motivation will be measured by a validated motivational engagement instrument. SciLG results along with the motivational engagement instrument will be disseminated widely through a variety of professional networks to stimulate implementation nationwide.

      Investigating How to Enhance Scientific Argumentation through Automated Feedback in the Context of Two High School Earth Science Curriculum Units

      This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. 

      Lead Organization(s): 
      Award Number: 
      1418019
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      With the current emphasis on learning science by actively engaging in the practices of science, and the call for integration of instruction and assessment; new resources, models, and technologies are being developed to improve K-12 science learning. Student assessment has become a nationwide educational priority due, in part, to the need for relevant and timely data that inform teachers, administrators, researchers, and the public about how all students perform and think while learning science. This project responds to the need for technology-enhanced assessments that promote the critical practice of scientific argumentation--making and explaining a claim from evidence about a scientific question and critically evaluating sources of uncertainty in the claim. It will investigate how to enhance this practice through automated scoring and immediate feedback in the context of two high school curriculum units--climate change and fresh-water availability--in schools with diverse student populations. The project will apply advanced automated scoring tools to students' written scientific arguments, provide individual students with customized feedback, and teachers with class-level information to assist them with improving scientific argumentation. The key outcome of this effort will be a technology-supported assessment model of how to advance the understanding of argumentation, and the use of multi-level feedback as a component of effective teaching and learning. The project will strengthen the program's current set of funded activities on assessment, focusing these efforts on students' argumentation as a complex science practice.

      This design and development research targets high school students (n=1,940) and teachers (n=22) in up to 10 states over four years. The research questions are: (1) To what extent can automated scoring tools, such as c-rater and c-rater-ML, diagnose students' explanations and uncertainty articulations as compared to human diagnosis?; (2) How should feedback be designed and delivered to help students improve scientific argumentation?; (3) How do teachers use and interact with class-level automated scores and feedback to support students' scientific argumentation with real-data and models?; and (4) How do students perceive their overall experience with the automated scores and immediate feedback when learning core ideas in climate change and fresh-water availability topics through scientific argumentation enhanced with modeling? In Years 1 and 2, plans are to conduct feasibility studies to build automated scoring models and design feedback for previously tested assessments for the two curriculum units. In Year 3, the project will implement design studies in order to identify effective feedback through random assignment. In Year 4, a pilot study will investigate if effective feedback should be offered with or without scores. The project will employ a mixed-methods approach. Data-gathering strategies will include classroom observations; screencast and log data of teachers' and students' interaction with automated feedback; teachers' and students' surveys with selected- and open-ended questions; and in-depth interviews with teachers and students. All constructed-response explanations and uncertainty items will be scored using automated scoring engines with fine-grained rubrics. Data analysis strategies will include multiple criteria to evaluate the quality of automated scores; descriptive statistical abalyses; analysis of variance to investigate differences in outcomes from the designed studies' pre/posttests and embedded assessments; analysis of covariance to investigate student learning trajectories; two-level hierarchical linear modeling to study the clustering of students within a class; and analysis of screencasts and log data.

      EarSketch: An Authentic, Studio-based STEAM Approach to High School Computing Education

      This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses.

      Award Number: 
      1417835
      Funding Period: 
      Fri, 08/01/2014 to Tue, 07/31/2018
      Project Evaluator: 
      Mary Moriarity
      Full Description: 

      This project will study the influence on positive student achievement and engagement (particularly among populations traditionally under-represented in computer science) of an intervention that integrates a computational music remixing tool -EarSketch- with the Computer Science Principles, a view of computing literacy that is emerging as a new standard for Advanced Placement and other high school computer science courses. The project is grounded on the premise that EarSketch, a STEM + Art (STEAM) learning environment, embodies authenticity (i.e., its cultural and industry relevance in both arts and STEM domains), along with a context that facilitates communication and collaboration among students (i.e., through a studio-based learning approach). These elements are critical to achieving successful outcomes across diverse student populations. Using agent-based modeling, the research team will investigate what factors enhance or impede implementation of authentic STEAM tools in different school settings.

      The researchers will be engaged in a multi-stage process to develop: a) an implementation-ready, web-based EarSketch learning environment that integrates programming, digital audio workstation, curriculum, audio loop library, and social sharing features, along with studio-based learning functionality to support student presentation, critique, discussion, and collaboration; and b) an online professional learning course for teachers adopting EarSketch in Computer Science Principles courses. Using these resources, the team will conduct a quasi-experimental study of EarSketch in Computer Science Principles high school courses across the state of Georgia; measure student learning and engagement across multiple demographic categories; and determine to what extent an EarSketch-based CS Principles course promotes student achievement and engagement across different student populations. The project will include measures of student performance, creativity, collaboration, and communication in student programming tasks to determine the extent to which studio-based learning in EarSketch promotes success in these important areas. An agent-based modeling framework in multiple school settings will be developed to determine what factors enhance or impede implementation of EarSketch under conditions of routine practice.

      Developing and Testing the Internship-inator, a Virtual Internship in STEM Authorware System

      The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. 

      Award Number: 
      1418288
      Funding Period: 
      Mon, 09/01/2014 to Fri, 08/31/2018
      Full Description: 

      Ensuring that students have the opportunities to experience STEM as it is conducted by scientists, mathematicians and engineers is a complex task within the current school context. This project will expand access for middle and high school students to virtual internships, by enabling STEM content developers to design and customize virtual internships. The Internship-inator is an authorware system for developing and testing virtual internships in multiple STEM disciplines. In a virtual internship, students are presented with a complex, real-world STEM problem for which there is no optimal solution. Students work in project teams to read and analyze research reports, design and perform experiments using virtual tools, respond to the requirements of stakeholders and clients, write reports and present and justify their proposed solutions. The researchers in this project will work with a core development network to develop and refine the authorware, constructing up to a hundred new virtual internships and a user group of more than 70 STEM content developers. The researchers will iteratively analyze the performance of the authorware, focusing on optimizing the utility and the feasibility of the system to support virtual internship development. They will also examine the ways in which the virtual internships are implemented in the classroom to determine the quality of the STEM internship design and influence on student learning.

      The Intership-inator builds on over ten years of NSF support for the development of Syntern, a platform for deploying virtual internships that has been used in middle schools, high schools, informal science programs, and undergraduate education. In the current project, the researchers will recruit two waves of STEM content developers to expand their current core development network. A design research perspective will be used to examine the ways in which the developers interact with the components of the authorware and to document the influence of the virtual internships on student learning. The researchers will use a quantitative ethnographic approach to integrate qualitative data from surveys and interviews with the developers with their quantitative interactions with the authorware and with student use and products from pilot and field tests of the virtual internships. Data-mining and learning analytics will be used in combination with hierarchical linear modeling, regression techniques and propensity score matching to structure the quasi-experimental research design. The authorware and the multiple virtual internships will provide researchers, developers, and teachers a rich learning environment in which to explore and support students' learning of important college and career readiness content and disciplinary practices. The findings of the use of the authorware will inform STEM education about the important design characteristics for authorware that supports the work of STEM content and curriculum developers.

      Integrating Quality Talk Professional Development to Enhance Professional Vision and Leadership for STEM Teachers in High-Need Schools

      This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions.

      Award Number: 
      1316347
      Funding Period: 
      Mon, 07/15/2013 to Fri, 06/30/2017
      Full Description: 

      This project expands and augments a currently-funded NSF Noyce Track II teacher recruitment and retention grant with Quality Talk (QT), an innovative, scalable teacher-facilitated discourse model. It is hypothesized that the QT model will enhance pre- and in-service secondary teachers' development of professional vision and leadership skills necessary for 21st century STEM education. Over the course of four years, the work will address critical needs in physics and chemistry education in 10th through 12th grade classrooms in five of Georgia's high-need school districts by strengthening the capacity of participating teachers to design and implement lessons that support effective dialogic interactions. As a result of such interactions, students' scientific literacy will be enhanced, including their ability to participate in content-rich discourse (i.e., QT) through effective disciplinary critical-analytic thinking and epistemic cognition. The contributions of this project, beyond the tangible benefits for teacher and student participants, include the development, refinement, and dissemination of an effective QT intervention and professional developmental framework that the entire science education community can use to promote scientific literacy and understanding.

      The project goals are being achieved through a series of three studies employing complementary methods and data sources, and a focus upon dissemination of the model in the final project year. The first two years of the project focus on developing and refining the curricular and intervention efficacy materials using design-based research methods. In Year 3, the project engages in a quasi-experimental study of the refined QT model, followed by further refinements before disseminating the materials both within Georgia and throughout the national science education community in Year 4. Quantitative measures of teacher and student discourse and knowledge, as well as video-coding and qualitative investigations of intervention efficacy, are being analyzed using multiple methods. In collaboration with, but independent from project staff and stakeholders, the participatory and responsive evaluation utilizes a variety of qualitative and quantitative methods to conduct formative and summative evaluation.

      Over the course of four years, the project will involve the participation of approximately 32 teachers in Georgia whose students include substantive percentages from populations underrepresented in the STEM fields. In addition to advancing their own students' scientific literacy, these participating teachers receive professional development on how to train other teachers, outside of the project, in using QT to promote scientific literacy. Further, the project will conduct a QT Summit for educational stakeholders and non-participant teachers to disseminate the intervention and professional development model. Finally, the project team will disseminate the findings widely to applied and scholarly communities through a website with materials and PD information (http://www.qualitytalk.org), professional journals, conferences, and NSF's DRK-12 Resource Network. This project, with its focus on teacher leadership and the pedagogical content knowledge necessary to use discourse to promote student science literacy, significantly advances the nation's goals of producing critical consumers and producers of scientific knowledge.

      Pages

      Subscribe to Student Attitudes/Beliefs