Quasi-experimental

High Adventure Science: Earths Systems and Sustainability

This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.

Project Email: 
Lead Organization(s): 
Award Number: 
1220756
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Project Evaluator: 
Karen Mutch-Jones
Full Description: 

We have entered the Anthropocene, an age when the actions of seven billion humans have increasing influence on the Earth. The High-Adventure Science: Earth Systems and Sustainability project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The Concord Consortium in partnership with the University of California Santa Cruz and the National Geographic Society are co-developing these modules, conducting targeted research on how the modules enhance students' higher order thinking skills and understanding of human-Earth interactions, and broadly disseminating these materials via far-reaching education networks.

The High-Adventure Science: Earth Systems and Sustainability project is creating online, middle and high school curriculum modules that feature computational models and cover five topics: climate change, fresh water availability, fossil fuel utilization, resource sustainability, and land use management. At the same time, the project team is conducting design studies to look at how specific features, prompts, argumentation and evaluation tools built into the modules affect student understanding of core Earth science concepts. The design studies promote rapid, iterative module development and help to identify features that support student learning, as well as scientific reasoning, scientific argumentation with uncertainty, systems thinking, and model-based experimentation skills. For each module, pre- and posttest data, embedded assessments, student surveys, classroom observations, teacher interviews and surveys, provide important information to rapidly improve module features, content, and usability. The final, high-quality, project materials are being made available to a national audience through the National Geographic Society as well as through the High-Adventure Science: Earth Systems and Sustainability website hosted at the Concord Consortium.

It is essential that students graduate from high school with a solid understanding of the scientific concepts that help explain how humans impact Earth systems, and conversely, how Earth processes impact humans. The High-Adventure Science: Earth Systems and Sustainability project provides a unique, research-based approach to conveying to students core Earth science content, crosscutting concepts, and fundamental practices of science. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials, and the research findings provide new insights on how students learn core science concepts and gain critical scientific skills.

Modeling in Primary Grades (MPG): Science Learning Through Content Rich Inquiry

This exploratory project examines how teachers of second grade students scaffold the development of student conceptual models and their understanding of the nature of scientific models and modeling processes in physical science conceptual areas associated with the particulate nature of matter. This foundational research provides descriptive exemplars that can be shared in both the research literature and in practitioner publications as examples of what cognitively rich pedagogy can achieve.

Lead Organization(s): 
Award Number: 
1222853
Funding Period: 
Mon, 10/01/2012 to Wed, 09/30/2015
Full Description: 

This exploratory project examines how teachers of second grade students scaffold the development of student conceptual models and their understanding of the nature of scientific models and modeling processes in physical science conceptual areas associated with the particulate nature of matter. Teachers receive professional development around ways in which they can facilitate productive disciplinary discussions with young children that result in students coming to understand core ideas in the Next Generation Science Standards. The project focuses on the topics of matter and sound based on the FOSS units "Solids and Liquids" and "Water," and the STC unit "Sound". It builds on an earlier project on life science for kindergarten teachers and students to expand the research communities understanding of how young children learn in science. Researchers from Purdue University are working with public schools in Lafayette that have high Hispanic populations and low SES, as well as a private school system with a more affluent population.

This project employs a mixed methodological research design that incorporates rich qualitative data collection and analysis combined with a quasi-experimental design that examines student learning across a treatment and comparison group with the same curricular materials but with differing support for teachers to engage students in disciplinary productive discussions about the science phenomena that they are studying. Research questions are designed to elicit descriptions of the differing aspects of learning that are evidenced by students together with rich descriptions of the teaching strategies that are associated with the classroom environments. Because this is an exploratory study, no causal comparisons between teacher practices and student outcomes are drawn, but the project provides the underpinnings that will support future research that would take a more rigorous approach. The project further develops the methodology of examining disciplinary rich description of student models to advance the understanding of how content and reasoning interact with young children.

Recent research in cognition has demonstrated that young children reason in a more sophisticated manner than previously understood. The Next Generation Science Standards has a strong focus on student reasoning practices, and the development of student explanations of science phenomenon requires that students have the opportunity to experience classrooms in which discussions of scientific ideas are scaffolded. Teachers need examples of how to interact with young children and of how to interpret what students say in ways that move the understanding of scientific concepts forward. This foundational research provides descriptive exemplars that can be shared in both the research literature and in practitioner publications as examples of what cognitively rich pedagogy can achieve.

The Impact of Early Algebra on Students' Algebra-Readiness (Collaborative Research: Knuth)

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

Award Number: 
1219606
Funding Period: 
Mon, 10/01/2012 to Wed, 09/30/2015
Full Description: 

The Impact of Early Algebra on Students' Algebra-Readiness is a collaborative project at the University of Wisconsin and TERC, Inc. They are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school. This study helps to build our knowledge about the piece of the progression that is just prior to entering middle school where many students begin formal instruction in algebra.

Building on previous research about early algebra learning, researchers will teach a curriculum that was carefully designed to reflect what we know about learning algebraic concepts. Previous research has shown that young children from very diverse backgrounds have the ability to construct algebraic ideas such as equality, representation, generalization, and functions. Researchers are collecting data about students' algebraic knowledge as well as arithmetical knowledge.

We know that the majority of students in the United States struggle with learning formal algebra. By studying the implementation of the research-based curriculum for an extended period of time, researcher's are learning about how algebraic ideas are connected and whether or not early instruction on algebraic ideas will help students learn more formal ideas in middle school.

The Impact of Early Algebra on Students' Algebra-Readiness (Collaborative Research: Blanton)

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

Award Number: 
1219605
Funding Period: 
Mon, 10/01/2012 to Wed, 09/30/2015
Full Description: 

The Impact of Early Algebra on Students' Algebra-Readiness is a collaborative project at the University of Wisconsin and TERC, Inc. They are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school. This study helps to build our knowledge about the piece of the progression that is just prior to entering middle school where many students begin formal instruction in algebra.

Building on previous research about early algebra learning, researchers will teach a curriculum that was carefully designed to reflect what we know about learning algebraic concepts. Previous research has shown that young children from very diverse backgrounds have the ability to construct algebraic ideas such as equality, representation, generalization, and functions. Researchers are collecting data about students' algebraic knowledge as well as arithmetical knowledge.

We know that the majority of students in the United States struggle with learning formal algebra. By studying the implementation of the research-based curriculum for an extended period of time, researcher's are learning about how algebraic ideas are connected and whether or not early instruction on algebraic ideas will help students learn more formal ideas in middle school.

Assessing Secondary Teachers' Algebraic Habits of Mind (Collaborative Research: Stevens)

This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.

Partner Organization(s): 
Award Number: 
1222496
Funding Period: 
Wed, 08/15/2012 to Sun, 07/31/2016
Full Description: 

Boston University, Education Development Center, Inc., and St. Olaf College are collaborating on Assessing Secondary Teachers' Algebraic Habits of Mind (ASTAHM) to develop instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. MHoM is a critical component of mathematical knowledge for teaching at the secondary level. Recognizing the need for a scientific approach to investigate the ways in which MHoM is an indicator of teacher effectiveness, the partnership is researching the following questions:

1. How do teachers who engage MHoM when doing mathematics for themselves also bring MHoM to their teaching practice?

2. How are teachers' engagement with MHoM and their use of these habits in teaching related to student understanding and achievement?

To investigate these questions, ASTAHM is developing two instruments: a paper and pencil (P&P) assessment and an observation protocol that measure teachers' knowledge and classroom use, respectively, of MHoM.

The work is being conducted in two phases: (1) an instrument-refinement and learning phase, and (2) an instrument-testing and research phase. Objectives of Phase 1 are to gather data to refine the project's existing instruments and to learn about the bridge factors that impact the relationship between teachers' knowledge and classroom use of MHoM. Specific research activities include: administering the pilot P&P assessment to 40 teachers, videotaping Algebra instructions of 8 teachers, performing initial testing and refinement of the instruments, and using the data to analyze the bridge factors. Phase 2 is a large-scale study involving field-testing the P&P assessment with 200 teachers, videotaping 20 teachers and studying them using the observation protocol, collecting achievement data from 3000 students, and checking P&P content validity with 200 mathematicians. With these validated instruments in hand, the project will then conduct an investigation into the above research questions. Lesley University's Program Evaluation and Research Group (PERG) is the external evaluator. PERG is assessing ASTAHM's overall success in developing valid and reliable instruments to investigate the extent to which a relationship exists between teachers' MHoM and their classroom practice, as well as student achievement. Evaluators are also investigating whether users' coding guides for both instruments enable field-testers to effectively use and adequately score them.

This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement. The MHoM construct is closely aligned with the Common Core State Standards-Mathematics (CCSS-M); especially its Standards for Mathematical Practice. For example, both place importance on seeking and using mathematical structure. Thus the instruments this project produces can act as pre- and post-measures of the effectiveness of professional development programs in preparing teachers to implement the CCSS-M. Mathematics teacher knowledge at the secondary level is an understudied field. Through analyses of the practices and habits of mind that teachers bring to their work, ASTAHM is developing instruments that can be used to shed light on effective secondary teaching.


Project Videos

2019 STEM for All Video Showcase

Title: Studying Teachers' Mathematical Habits of Mind

Presenter(s): Sarah Sword, Eden Badertscher, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2017 STEM for All Video Showcase
Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Sarah Sword, Courtney Arthur, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2016 STEM for All Video Showcase

Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Ryota Matsuura, Al Cuoco, Glenn Stevens, & Sarah Sword


Supporting Large Scale Change in Science Education: Understanding Professional Development and Adoption Variation Related to the Revised Advanced Placement Curriculum (PD-RAP)

This proposal leverages the re-design of the Advanced Placement (AP) curricula currently under way to study the impact of teacher professional development on student achievement in a natural experiment at scale. In addition to supporting the improvement of professional development of AP teachers by the College Board, the findings contribute to a better understanding of the relationship between professional development and student achievement more generally.

Award Number: 
1221861
Funding Period: 
Sat, 09/15/2012 to Wed, 08/31/2016
Full Description: 

This proposal leverages the re-design of the Advanced Placement (AP) curricula currently under way to study the impact of teacher professional development on student achievement in a natural experiment at scale. Researchers from the University of Massachusetts Boston, Harvard University, the University of Michigan, and the Education Development Center, Inc are conducting a quasi-experimental research study to examine the professional development experienced by AP Biology, Chemistry and Physics teachers to determines 1) the relationship between teacher and school characteristics and the professional development patterns that teachers choose; 2) the relationship between the professional development patterns that various types of teachers choose and their students' outcomes; and 3) the challenges encountered in delivering various forms of professional development at this level of scale. In addition to supporting the improvement of professional development of AP teachers by the College Board, the findings contribute to a better understanding of the relationship between professional development and student achievement more generally.

This study uses the existing context of the AP Course Audit by which all teachers of AP courses submit a syllabus, descriptions of laboratory investigations, and information regarding contact hours and the background of teachers, including the professional development programs accessed. The teachers who submit audits will be surveyed using the Stages of Concern Questionnaire together with other items to determine their perceptions of the AP Science redesign. The experiences of over 20,000 teachers are examined over the course of the study. Teachers who participate in AP professional development conducted by the College Board and the Active AP online Teacher Community (APoTC) will be surveyed about their professional development experiences. Case studies of 40 using interview, elaborated survey items, and artifacts from their teaching provide information about the quality of the teacher implementation of the AP course. Scores on the AP exams of all of the students will be linked to the teachers and the relationships among those scores and teacher professional development experiences analyzed using multi-level regression analyses.

The findings from this study have considerable importance for those individuals who provide professional development for science teachers. The results will inform the College Board and others who provide professional development directly to AP science teachers about how that support needs to change in order to more effectively support teachers. Improving the support that AP teachers receive has the potential to improve the learning experiences of the students who participate in those classes. In addition, this study will provide information about issues and challenges to providing professional development at scale to a wider audience of professional development providers. As the Next Generation Science Standards come online, this information will be useful to policy makers and practitioners.

InterLACE: Interactive Learning and Collaboration Environment

This project designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments.

Lead Organization(s): 
Award Number: 
1119321
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2013
Full Description: 

This project, under the Tufts University Center for Engineering Education and Outreach (CEEO) designs, constructs, and field-tests a web-based, online collaborative environment for supporting the teaching and learning of inquiry-based high school physics. Based on prior NSF-funded work on RoboBooks, an interactive digital workbook environment, the team is customizing the platform to include scaffolds and other supports for learning physics, fostering interaction and collaboration within the classroom, and facilitating a design-based approach to scientific experiments. The InterLACE team hypothesizes that technology seamlessly integrating physics content and process skills within a classroom learning activity will provide a wide variety of student benefits, ranging from improved learning outcomes and increased content knowledge to gains in attitudinal and social displays as well.

The hypothesis for this work is based on research that indicates teachers believe proper implementation of design-based, inquiry projects are time consuming and can be difficult to manage and facilitate in classrooms without great scaffolding or other supports. Using design-based research with a small number of teachers and students, the PIs iteratively develop the system and supporting materials and generate a web-based implementation that supports students through the various stages of design inquiry. A quasi-experimental trial in the final years of the project is used to determine the usability of the technology and efficacy of the system in enhancing teaching and learning. Through the tools and activities developed, the researchers anticipate showing increases in effective inquiry learning and enhanced accessibility to meet the needs of diverse learners and teachers, leading to changes in classroom practice.

Through this project the PIs (1) gain insights that will enable them to refine the InterLACE platform so it can be implemented and brought to scale in the near terms as a support for design-based inquiry science projects, and (2) advance theory, design and practice to support the design of technology-based learning environments, and (3) understand how connecting students? hypotheses, ideas, and data impacts their learning of physics content and scientific inquiry skills.

Project ATOMS: Accomplished Elementary Teachers of Mathematics and Science

The project is studying the impact of the mathematics and science intensive pre-service preparation program for elementary school teachers.  The project includes assessments of pre-service teachers' math and science content, teacher performance, self-report surveys, and teacher interviews. Each of the study dimensions (Knowledge Dimension, Teaching Performance, and Perspectives on the Program) will be assessed at three time points across this longitudinal study, providing a model for elementary teacher development of STEM teaching.

Partner Organization(s): 
Award Number: 
1118894
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2019
Full Description: 

The project is studying the impact of the mathematics and science intensive pre-service preparation program for elementary school teachers at North Carolina State University called the Accomplished Elementary Teachers of Mathematics and Science (ATOMS). Faculty in NCSU's Department of Elementary Education, researchers at the Duke University Sanford School of Public Policy's Education Research Data Center and the NC State College Professional Education Office are involved in conducting this project.

The project includes assessments of pre-service teachers' math and science content, teacher performance, self-report surveys, and teacher interviews. Researchers are also tracking participants' perspectives on the program and comparing knowledge dimensions and teaching performance of a sub-sample of ATOMS teachers to a similar group of non-ATOMS teachers. Each of the study dimensions (Knowledge Dimension, Teaching Performance, and Perspectives on the Program) will be assessed at three time points across this longitudinal study, providing a model for elementary teacher development of STEM teaching.

The study has potential to advance current understanding regarding teacher preparation, especially in terms of supporting elementary teachers' instruction in science and math. The project is also innovative and potentially transformative by asking interesting and pertinent questions of how teachers can affect the learning of their students. Besides generating new knowledge, this project also has the potential to impact STEM education research. The ATOMS pre-service teacher preparation program may serve as a model for effective pre-service teacher education across the nation if the researchers can clearly demonstrate the effect of participating in the program in changing teachers' knowledge, attitudes, and skills, as well as their students' achievement. Investigators propose the dissemination of findings to both K-12 audiences and institutions of higher education. Additionally, key findings will be bulleted for policy makers in brief reports or brochures sent to deans of Colleges of Education nationwide, highlighting recommendations based on the findings.

The Effectiveness of Inclusive STEM Schools at Scale: A Multistate Longitudinal Quasi-Experiment

In this project, investigators are laying the foundation for a rigorous quasi-experiment to test the effects of attending such a school using longitudinal student records, surveys, and interviews. By documenting survey response rates, student location rates, and rates for successful matching of student administrative and survey data, this project is demonstrating that it is possible to collect data that would enable a large-scale study to be launched with the necessary instruments and experience in hand.

Lead Organization(s): 
Award Number: 
1118993
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2013
Full Description: 

Concerns about both economic competitiveness and educational equity emphasize the need for the United States to broaden and diversify the pipeline of students prepared and motivated to pursue STEM college majors. An emerging strategy for addressing this need is large-scale implementation of inclusive STEM high schools. In this exploratory project, investigators from SRI International and George Washington University are laying the foundation for a rigorous quasi-experiment to test the effects of attending such a school using longitudinal student records, surveys, and interviews. The project's operational definition for an inclusive STEM high school (ISHS) is a school, school within a school, or school program that accepts students primarily on the basis of interest rather than aptitude or prior achievement and gives them the mathematics and science preparation they need to succeed in a STEM college major. ISHSs enroll students from groups underrepresented in STEM professions through an application process that does not require high test scores before high school entry. In contrast to selective STEM schools that admit gifted and talented students on the basis of entrance examination scores and thus select for perceived STEM aptitude, ISHSs have the more ambitious goal of developing STEM expertise.

To establish the feasibility of a large, multi-state investigation of the effectiveness of inclusive STEM schools at scale, researchers are:

- Developing a tentative taxonomy of ISHSs and exploring implications of ISHS heterogeneity for the research design;

- Recruiting three school partners representing different ISHS approaches;

- Using state data to identify a comparison school (without a particular focus on STEM) for each ISHS school partner and recruiting comparison school partners;

- Developing School Leader and three student surveys (fall 9th-grade, spring 12th-grade, and spring post-graduation);

- Collaborating with partner schools in design of data collection procedures, recruiting materials, and incentives;

- Piloting the School Leader Survey and two student surveys (9th-grade fall survey and 12th-grade spring survey) in six partner schools;

- Identifying and recruiting a larger sample of ISHSs and matched comparison schools for Year 2 data collection;

- Administering surveys in 40 or more high schools;

- Locating spring 2012 graduates of the three ISHS partner schools and pilot testing the post-graduation student survey with these students; and

- Engaging an Advisory Board who will provide methodological expertise and advice.

Ultimately, by documenting survey response rates, student location rates, and rates for successful matching of student administrative and survey data, this feasibility work is demonstrating that it is possible to collect the kind of data that would enable a large-scale study to be launched with the necessary instruments and experience in hand. As evidenced by the recent call from the President's Council of Advisors in Science and Technology for 1,000 new STEM schools and the National Research Council's report entitled "Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics" that highlights various STEM schools, the proposed research is highly relevant to current policy initiatives and debates. Moreover, the research has the potential to promote diversity in the STEM pipeline by influencing policymakers in states and districts that have yet to implement ISHSs at scale.

Energy: A Multidisciplinary Approach for Teachers (EMAT) Designing and Studying a Multidisciplinary, Online Course for High School Teachers

This project will iteratively design, develop, field test, refine, and rigorously study a six-unit, facilitated, online professional development (PD) course focusing on energy-related concepts in the context of alternative energy. The primary audience is high school science teachers teaching out of their field of endorsement and serving students underrepresented in the sciences. The project will investigate whether the PD will precipitate changes in teacher knowledge and practice that result in higher student achievement.

Award Number: 
1118643
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
RMC Research Corporation
Full Description: 

The Energy: A Multidisciplinary Approach for Teachers (EMAT) project will iteratively design, develop, field test, refine, and rigorously study a seven-unit, facilitated, online professional development (PD) course focusing on energy-related concepts in the context of alternative energy. The primary audience is high school science teachers teaching out of their field of endorsement and serving students underrepresented in the sciences. The project will investigate whether the PD will precipitate changes in teacher knowledge and practice that result in higher student achievement. As a result, EMAT will improve the science achievement of underrepresented students and enhance their future participation in science. Biological Sciences Curriculum Study and partners Oregon Public Broadcasting, the National Teacher Enhancement Network, the National Renewable Energy Laboratory, the Great Lakes Bioenergy Research Center, and RMC Research Corporation bring significant resources and are highly qualified to develop and research EMAT.

The EMAT project advances knowledge in the field of teacher professional development by merging two facets of PD that have hitherto been studied separately and testing hypotheses about the degree to which this pairing enhances learning and practice. These facets are structured constructivist experiences and experiences grounded in situated cognition learning theory. Teachers reflect on research-based teaching practices in the lesson analysis process through Science Content Storyline and Student Thinking lenses. EMAT tests longitudinal impacts on teachers' content knowledge, pedagogical content knowledge, and teaching practices and students' content knowledge, contributing much needed data for future PD projects. EMAT also studies which aspects of online environments are most effective for teachers. Data collected will inform full revisions of the course and will help address significant gaps in our understanding of online PD.

EMAT advances the field's understanding of which elements of online PD are effective and the extent to which high-quality online PD translates to improved student learning. Simultaneously, the project develops and tests a scalable, flexible resource to enhance teacher learning and practice. As a result, EMAT will have a broad impact by promoting research-based teaching and learning while advancing discovery and understanding. Furthermore, by targeting the recruitment of teacher participants from large urban districts with high numbers of teachers teaching out of field, EMAT impacts students traditionally underrepresented in the sciences. EMAT will not only contribute to the research on PD, but also will be available for use in diverse settings. A facilitation guide allows the course to be freely used by school districts and teacher education and certification programs across the country. In addition, the facilitated course will be offered for graduate credit through the National Teacher Enhancement Network and will be freely available to individuals for independent study. Results of all research and evaluation will be published in science education journals and practitioner journals for teachers, and presented to PD groups at conferences. EMAT will benefit society by impacting teacher and student understanding of energy-related concepts, thereby increasing the capacity of U.S. citizens to creatively address energy challenges from a foundation of scientifically sound knowledge.

Pages

Subscribe to Quasi-experimental