Case Study

Computer Science in Secondary Schools (CS3): Studying Context, Enactment, and Impact

This project will examine the relationships among the factors that influence the implementation of the Exploring Computer Science (ECS), a pre-Advanced Placement curriculum that prepares students for further study in computer science. This study elucidates how variation in curricular implementation influences student learning and determines not only what works, but also for whom and under what circumstances.

Lead Organization(s): 
Award Number: 
1418149
Funding Period: 
Fri, 08/01/2014 to Tue, 07/31/2018
Full Description: 

Computational thinking is an important set of 21st century knowledge and skills that has implications for the heavily technological world in which we live. Multiple industries indicate the under supply of those trained to be effective in the computer science workforce. In addition, there are increasing demands for broadening the participation in the computer science workforce by women and members of minority populations. SRI International will examine the relationships among the factors that influence the implementation of the Exploring Computer Science (ECS), a pre-Advanced Placement curriculum that prepares students for further study in computer science. SRI will work in partnership with the ECS curriculum developers, teachers, and the nonprofit Code.org who are involved in the scaling of ECS. This study elucidates how variation in curricular implementation influences student learning and determines not only what works, but also for whom and under what circumstances.

SRI will conduct a pilot study in which they develop, pilot, and refine measures as they recruit school districts for the implementation study. The subsequent implementation study will be a 2 year examination of curriculum enactment, teacher practice, and evidence of student learning. Because no comparable curriculum currently exists, the study will examine the conditions needed to implement the ECS curriculum in ways that improve student computational thinking outcomes rather than determine whether the ECS curriculum is more effective than other CS-related curricula. The study will conduct two kinds of analyses: 1) an analysis of the influence of ECS on student learning gains, and 2) an analysis of the relationship between classroom-level implementation and student learning gains. Because of the clustered nature of the data (students nested within classrooms nested within schools), the project will use hierarchical linear modeling to examine the influence of the curriculum.

Bio-Sphere: Fostering Deep Learning of Complex Biology for Building our Next Generation's Scientists

The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. Research teams will develop an innovative learning environment called Bio-Sphere, which will foster learning of complex science issues through hands-on design and engineering.

Award Number: 
1418044
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Today's citizens face profound questions in science. Preparing future generations of scientists is crucial if the United States is to remain competitive in a technology-focused economy. The biological sciences are of particular importance for addressing some of today's complex problems, such as sustainability and food production, biofuels, and carbon dioxide and its effect on our environment. Although knowledge in the life sciences is of critical importance, this is an area in which there are significantly fewer studies examining students' conceptions than in physics and chemistry. The goal of this project is to help middle school students, particularly in rural and underserved areas, develop deep scientific knowledge and knowledge of the practices and routines of science. A major strength of Bio-Sphere is the inclusion of hands-on design and engineering in biology, a field in which there are fewer instances of curricula that integrate engineering design at the middle school level. The units will enable an in-depth, cohesive understanding of science content, and Bio-Sphere will be disseminated nationally and internationally through proactive outreach to teachers as well as scholarly publications.

This project addresses the need to inculcate deep learning of complex science by bringing complex socio-scientific issues into middle school classrooms, and providing students with instructional materials that allow them to practice science as scientists do. Research teams will develop, iteratively refine and evaluate an innovative learning environment called Bio-Sphere. Bio-Sphere combines the strengths of hands-on design and engineering, engages students in the practices of science, and fosters learning of complex science issues, especially among underserved populations. Each Bio-Sphere unit presents a complex science issue in the form of a design challenge that students solve by conducting experiments, using visualizations in an electronic textbook, and connecting with the community. The units, aligned with the Next Generation Science Standards, provide greater coherence, continuity, and sustained instruction focused on uncovering and integrating key ideas over long periods of time. The project will follow a design-based research methodology. In Phase 1, the Bio-Sphere materials will be developed. Phase 2 will consist of studies in Wisconsin schools to generate existence proofs, i.e., examining enactments with respect to the designed objectives to understand how a design works. Phase 3 studies will focus on practical implementation: how to bring this innovative design to life in very different classroom contexts and without the everyday support of the design team, and will be conducted in rural schools in Alabama and North Carolina.

QuEST: Quality Elementary Science Teaching

This project is examining an innovative model of situated Professional Development (PD) and the contribution of controlled teaching experiences to teacher learning and, as a result, to student learning. The project is carrying out intensive research about an existing special PD summer institute (QuEST) that has been in existence for more than five years through a state Improving Teacher Quality Grants program.

Lead Organization(s): 
Award Number: 
1316683
Funding Period: 
Thu, 08/15/2013 to Mon, 07/31/2017
Full Description: 

The University of Missouri-Columbia is examining an innovative model of situated Professional Development (PD) and the contribution of controlled teaching experiences to teacher learning and, as a result, to student learning. The project is carrying out intensive research about an existing special PD summer institute (QuEST) that has been in existence for more than five years through a state Improving Teacher Quality Grants program. The project will do the following: (1) undertake more in-depth and targeted research to better understand the efficacy of the PD model and impacts on student learning; (2) develop and field test resources from the project that can produce broader impacts; and (3) explore potential scale-up of the model for diverse audiences. The overarching goals of the project are: (a) Implement a high-quality situated PD model for K-6 teachers in science; (b) Conduct a comprehensive and rigorous program of research to study the impacts of this model on teacher and student learning; and (c) Disseminate project outcomes to a variety of stakeholders to produce broader impacts. A comparison of two groups of teachers will be done. Both groups will experience a content (physics) and pedagogy learning experience during one week in the summer. During a second week, one group will experience "controlled teaching" of elementary students, while the other group will not. Teacher and student gains will be measured using a quantitative and qualitative, mixed-methods design.

Improving Formative Assessment Practices: Using Learning Trajectories to Develop Resources That Support Teacher Instructional Practice and Student Learning in CMP2

The overarching goal of this project is to develop innovative instructional resources and professional development to support middle grades teachers in meeting the challenges set by college- and career-ready standards for students' learning of algebra.

Partner Organization(s): 
Award Number: 
1316736
Funding Period: 
Tue, 10/01/2013 to Sat, 09/30/2017
Full Description: 

The overarching goal of this project is to develop innovative instructional resources and professional development to support middle grades teachers in meeting the challenges set by college- and career-ready standards for students' learning of algebra. This 4-year project includes three major components: (1) development and empirical testing of learning trajectories for linear functions and linear equations, (2) collaborations with teachers of Connected Mathematics Project 2 (CMP2) to create and test a set of instructional resources focused on formative assessment processes, and (3) iterative refinement of a professional development model for engaging teachers with the instructional resources in ways that optimize students' learning of algebra. The professional development activities provide opportunities for teachers to develop specialized content knowledge of learning trajectories for linear functions and equations in algebra, processes for interpreting students' performances with respect to those trajectories and providing feedback and additional instructional activities based on "where" the student is with respect to the overall learning trajectory. Such changes in teacher knowledge and practice are anticipated to produce improved student learning outcomes for key concepts and procedures in algebra. One of the major stumbling blocks to teachers' implementation of effective formative assessment practice is the sheer volume and management of the information needed to monitor and interpret student performance. The project addresses this impediment by employing the ASSISTments platform, a web-based online system for delivering mathematics problem sets and capable of adapting problem presentation to student performance in real time.

Research on learning trajectories in mathematics has mostly centered on concepts at the primary school level. While research at this level has been prolific and informative in multiple aspects of mathematics education, there are major knowledge gaps in our understanding of learning trajectories in several domains of mathematics, specifically in algebra. Indeed, there is a growing need for new research and development projects to fill these critical knowledge gaps.

This project focuses on two critical areas in mathematics: students' understanding of linear functions and linear equations, and students' ability to use them to solve problems. Empirically validated learning trajectories will support curriculum development in these areas. In addition, this project contributes to the research base to improve the curriculum standards by providing empirical evidence for hypothesized trajectories for selected content standards for middle school students. Finally, the use of CMP2 augmented by the online management system increases the probability of widespread impact of the professional development model targeted at teachers' formative assessment practices. Although we are using a specific curriculum program, the treatment of linear functions and equations topics in CMP is consistent with other functions-based curricula in the U.S. Thus, the work done in the context of this project will be useful in examining learning trajectories and formative assessment in other instructional programs.

Cross-Sector Insights Toward Aligning Education Research and Real-World Impact

The goal of the project is to inform the development of an impact-based research methodology (IBR) to enable a more direct and overt connections between academic research on games and the development of educational products and services that are sustainable and scalable.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1349309
Funding Period: 
Sun, 09/01/2013 to Sun, 08/31/2014
Full Description: 

This EAGER proposal is a partnership among the Joan Ganz Cooney Center, an independent R&D organization associated with the Sesame Workshop, E-Line media, a publisher of game-based learning products, and the Center for Games and Impact at Arizona State University. The goal of the project is to inform the development of an impact-based research methodology (IBR) to enable a more direct and overt connections between academic research on games and the development of educational products and services that are sustainable and scalable. Through consultation with other researchers and developers, the team is conducting series case studies to identify promising practices from three communities: 1) the tech-enabled services sector, particularly the idea of lean start up, 2) the social impact sector; and 3) the learning sciences and educational research sector.

CAREER: Reciprocal Noticing: Latino/a Students and Teachers Constructing Common Resources in Mathematics

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners.

Lead Organization(s): 
Award Number: 
1253822
Funding Period: 
Wed, 05/15/2013 to Mon, 04/30/2018
Full Description: 

The goal of this project is to extend the theoretical and methodological construct of noticing to develop the concept of reciprocal noticing, a process by which teacher and student noticing are shared. The researcher argues that through reciprocal noticing the classroom can become the space for more equitable mathematics learning, particularly for language learners. Thus, the focus of the project is on developing the concept of reciprocal noticing as a way to support better interactions between teachers and Latino/a students in elementary mathematics classrooms.

The project uses a transformative teaching experiment methodology and is guided by the initial conjectures that to make mathematics classrooms intellectually attractive places, Latino/a students and teachers need to learn to develop common resources for teaching and learning mathematics, and that reciprocal noticing as a process supports teachers and students in developing these common resources for teaching and learning mathematics. The project design centers around two research questions:How do teachers and Latino/a students tune to each other's mathematical ideas and explicitly indicate to one another how their ideas are important for discourse that promotes mathematical reasoning in classrooms characterized by reciprocal noticing? What patterns emerge across four classrooms when teachers and Latino/a students engage in reciprocal noticing?

The concept of reciprocal noticing can significantly enhance emerging research in mathematics education about the importance of teacher noticing. Further, this revised concept of noticing can transform mathematics classroom to better support English Language Learners.

The PI will incorporate project findings and videos into methods courses for preservice elementary teachers.

Researching the Efficacy of the Science and Literacy Academy Model (Collaborative Research: Strang)

This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.

Award Number: 
1223021
Funding Period: 
Wed, 08/01/2012 to Sun, 07/31/2016
Full Description: 

This award is doing a research study of three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. Model 1 is a one-week institute based on classroom discourse practices and a 2-week practicum (cohort 1). Model 2 is the one-week institute (cohort 2). Model 3 is a "business as usual" model (cohort 3) based on normal professional development provided by the school district. Cohorts 1 and 2 experience the interventions in year 1 with four follow-up sessions in each of years 2 and 3. In year 4 they receive no PD, but are being observed to see if they sustain the practices learned. Cohort 3 receives no treatment in years 1 and 2, but participates in a revised version of the institute plus practicum in year 3 with four follow up sessions in year 4. The Lawrence Hall of Science provides the professional development, and Stanford University personnel are conducting the research. The teachers come from the Oakland Unified School District. Science content is the GEMS Ocean Sciences Sequence.

There are 3 research questions;

1. In what ways do practicum-based professional development models influence science instructional practice?

2. What differences in student outcomes are associated with teachers' participation in the different PD programs?

3. Is the impact of the revised PD model different from the impact of the original model?

This is a designed-based research model. Teacher data is based on interviews on beliefs about teaching and the analysis of video tapes of their practicum and classroom performance using the Discourse in Inquiry Science Classrooms instrument. Student data is based on the GEMS unit pre- and post-tests and the California Science Test for 5th graders. Multiple analyses are being conducted using different combinations of the data from 8 scales across 4 years.

There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos. These will be presented in publications and conference presentations and be posted on linked websites at the Lawrence Hall of Science and the Center to Support Excellence in Teaching at Stanford University.

Learning Trajectories to Support the Growth of Measurement Knowledge: Pre-K Through Middle School

This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This research project tests, revises and extends learning trajectories for children's knowledge of geometric measurement across a ten-year span of human development. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222944
Funding Period: 
Wed, 08/01/2012 to Tue, 07/31/2018
Full Description: 

This project is studying measurement practices from pre-K to Grade 8, as a coordination of the STEM disciplines of mathematics and science. This four-year, mixed methods research project tests, revises and extends learning trajectories (LTs) for children's knowledge of geometric measurement across a ten-year span of human development. Specifically, research teams from Illinois State University and the University at Denver are working with children in urban and suburban schools to (1) validate and extend prior findings from previous NSF-funded research developing measurement learning trajectories with children in pre-K to Grade 5, and (2) generate and extend portions of trajectories for geometric measurement for Grades 6-8.

The project employs a form of microgenetic studies with 24-50 children per grade from pre-K through Grade 5 representing a stratified random sample from a specific set of suburban schools. These studies will test the validity, replicability and generalizability of the LTs for length, area, and volume. The goal will be to validate all components of each learning trajectory, goal, developmental progression, and instruction tasks, as well as revising each LT to reflect the outcomes of the experiments. Analysis of variance measures with pre/post assessments in an experimental/control design will complement the repeated sessions method of microgenetic analysis.

To explore and extend LTs for children in Grade 6-8, the project employs teaching experiments. This design is used to generate and extend portions of trajectories for geometric measurement, and to explore critical aspects of measurement in clinical and classroom contexts. This work is coordinated with the teaching and learning standards issued by the Council of Chief State School Officials/National Governors Association, the National Council of Teachers of Mathematics, the National Science Teachers Association, the American Association of the Advancement of Science, and the National Research Council with cognitive and mathematics/science education literature. Emerging constructs for the hypothetical LT levels in relation to relevant frameworks generated by other researchers and those implied by standards documents to establish ongoing sequences of the experimental interventions for grades 6-8 are being compared, critiqued and evaluated.

This project provides a longitudinal account of pre-K to Grade 8 children's ways of thinking and understanding mathematical and scientific concepts of measurement based upon empirical analysis. The resulting learning trajectory will represent state of the art integrated, interdisciplinary, theoretically- and empirically-based descriptions of increasingly sophisticated and complex levels of thinking in the domain of measurement (albeit, more tentative for Grades 6-8). This account will be used to verify and/or modify existing accounts of children's development of reasoning from short-term analyses of learning or cross-sectional studies. There are not yet integrative longitudinal studies describing this cognitive domain for area or volume measurement. This trajectory-based analysis of development and instruction supports the design and testing of integrative, formative assessment of individuals and groups of children. Such learning trajectories will be useful in implementing the standard-focused curriculum described in the Common Core State Standards Mathematics and in supporting the multiple large assessment projects currently underway

SimScientists Assessments: Physical Science Links

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

Lead Organization(s): 
Award Number: 
1221614
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Full Description: 

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The assessment strand consists of multilevel (increased thinking levels) assessment designs grounded on evidence-centered principles that target practices and key disciplinary conceptual schemes, such as matter, motion, energy, and waves identified in the National Research Council report "A Framework for K-12 Science Education: Practices, Crosscutting Knowledge, and Core Ideas". The assessment model vertically links simulations (interactive with feedback to students, coaching, and reflection); curriculum-embedded assessments for formative use; unit benchmark assessment for interim summative purposes; and a set of "signature tasks" (short-term simulations on recurring problem types). Members of the Advisory Board and an Assessment Review Panel actively participate in the development and implementation of this effort. Heller Research Associates is the external evaluator. The evaluation plan addresses both formative and summative aspects.

The project's theory of action is based on model-based learning and evidence-centered design reflective of the notion that the construct of science is multidimensional, requiring (a) understanding how the components of a science conceptual system interact to produce behaviors of the system; and (b) the use of inquiry practices to investigate the dynamic behaviors and underlying components' interactions of the system. A total of eight research and development questions guide the scope of work. The questions focus on: (a) validity (substantive and technical quality) of the individual simulation assessments; and (b) classroom implementation (feasibility, fidelity, utility). The methodology for test construction and revision follows the testing standards of major professional organizations (i.e., American Educational Research Association, American Psychological Association, and National Council of Measurement in Education) through three development phases. Phase I (Assessment Development) focuses on the alignment, quality, and prototype testing, including leverage and modification of prior work, and design of new assessment suites and signature tasks. Phase II (Pilot and Validation Studies) deals with the testing of all assessments, research instruments, and study methods. Phase III (Cross-Validation Studies) substantiates the multilevel integration assessment model, cross-validates the assessments piloted in Phase II, and establishes a reliable argument that the assessments measure the intended content and inquiry practices suitable for use in district and state-level assessment systems.

Expected outcomes are: (1) a research-informed and field-tested physical science simulations-based assessment model with high potential for extended use in middle school grades; and (2) a policy brief that provides recommendations for integrating assessments into districts and state large-scale, multi-level, balanced science assessments.

CAREER: Adapting Curriculum for Learning in Mathematics Education (ACCLIME): Processes and Factors in Teachers' Evolving Adaptations of Curriculum Materials

The ACCLIME project investigates teachers' uses and adaptations of CMP, an NSF-funded middle school curriculum. The study seeks to better articulate: (1) the ways that teachers adapt CMP over time and how they develop professionally as a result of using the curriculum materials; (2) the connection between district policy, resource development, and teachers' curriculum processes; and (3) the dynamic nature of districts' long-term curriculum implementations.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0746573
Funding Period: 
Sun, 06/01/2008 to Fri, 05/31/2013
Full Description: 

The ACCLIME project investigates teachers' uses and adaptations of CMP, an NSF-funded middle school curriculum. The project comprises three nested series of case studies involving school districts that are long-term CMP implementers and that have provided substantial and ongoing support, and 16 middle school mathematics teachers within these districts. The study seeks to better articulate: (1) the ways that teachers adapt CMP over time and how they develop professionally as a result of using the curriculum materials; (2) the connection between district policy, resource development, and teachers' curriculum processes; and (3) the dynamic nature of districts' long-term curriculum implementations.

Pages

Subscribe to Case Study